
FAKULTÄT FÜR INFORMATIK

DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Information Systems

Integration of Learning
Analytics into Artemis

Stefan Waldhauser

FAKULTÄT FÜR INFORMATIK

DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Information Systems

Integration of Learning Analytics into Artemis

Integration von ”Learning Analytics” in
Artemis

Author: Stefan Waldhauser

Supervisor: Prof. Dr. Bernd Brügge

Advisor: Dr. Stephan Krusche

Date: 26.03.2021

I confirm that this bachelor’s thesis is my own work and I have documented
all sources and material used.

Munich, 26.03.2021 Stefan Waldhauser

Abstract

Learning analytics is a research field that tries to support the learning
process by collecting and comparing data about learners and their learning
contexts. Today, many learning management systems use learning analytics
techniques because of the benefits they offer both instructors and students.

This thesis addresses several learning analytics related shortcomings of
Artemis: Students need information about other students’ performance as a
guide to interpret their own performance. Although the data is available in
the system, Artemis does not currently provide students with such a means of
comparison. Artemis also does not support learning goals, i.e. competencies
that students should master when completing a course. The implementation
of learning analytics is hindered by the fact that large parts of the learning
process take place outside Artemis, as it is currently not possible to include,
for example, lecture recordings on the platform.

To address these shortcomings, we expanded Artemis in three areas:
First, the lecture concept has been redesigned. Videos, notes, files, and
exercises can be directly integrated into a lecture. Second, learning goals
can be defined and linked to relevant learning material. The system calcu-
lates a student’s progress towards goal mastery. Third, a learning analytics
dashboard contains visualizations that provide students with the necessary
context to interpret their performance in a course. The redesigned lectures
and learning goals were used in the course Patterns in Software Engineer-
ing. 538 students actively participated in the course. It contains 5 learning
goals and 12 lectures, with a total of 50 videos, 51 exercises, and 53 files.
The new Artemis capabilities received positive feedback from students and
instructors.

Zusammenfassung

Learning Analytics ist ein Forschungsgebiet, das versucht, den Lernprozess
durch das Sammeln und Vergleichen von Daten über Lernende und de-
ren Lernkontexte zu unterstützen. Heutzutage verwenden viele Lernmanage-
mentsysteme Learning-Analytics-Techniken, weil sie sowohl den Lehrenden
als auch den Lernenden Vorteile bieten.

Diese Arbeit befasst sich mit mehreren auf Learning Analytics bezogenen
Unzulänglichkeiten von Artemis: Studierende benötigen Informationen über
die Leistungen anderer Studierender als Orientierungshilfe, um ihre eigenen
Leistungen zu interpretieren. Obwohl die Daten im System verfügbar sind,
bietet Artemis den Studenten derzeit keine solche Vergleichsmöglichkeit. Ar-
temis unterstützt auch keine Lernziele, d.h. Kompetenzen, die Studierende
nach Abschluss eines Kurses beherrschen sollten. Die Implementierung von
Learning Analytics wird dadurch erschwert, dass große Teile des Lernprozes-
ses außerhalb von Artemis stattfinden, da es derzeit nicht möglich ist, z.B.
Vorlesungsaufzeichnungen in die Plattform einzubinden.

Um diese Unzulänglichkeiten zu beheben, haben wir Artemis in drei Berei-
chen erweitert: Erstens wurde das Vorlesungskonzept neu gestaltet. Videos,
Notizen, Dateien und Übungen können direkt in eine Vorlesung integriert
werden. Zweitens können Lernziele definiert und mit relevantem Lernmateri-
al verknüpft werden. Das System errechnet den Fortschritt eines Studenten
bei der Zielerreichung. Drittens enthält ein Learning-Analytics-Dashboard
Visualisierungen, die den Studenten den nötigen Kontext bieten, um ihre
Leistung in einem Kurs zu interpretieren. Die neu gestalteten Vorlesungen
und Lernziele wurden im Kurs Patterns in Software Engineering verwendet.
538 Studenten nahmen aktiv an dem Kurs teil. Er enthält 5 Lernziele und
12 Vorlesungen, mit insgesamt 50 Videos, 51 Übungen und 53 Dateien. Die
neuen Artemis-Funktionen erhielten positives Feedback von Studenten und
Dozenten.

Contents

1 Introduction 2

1.1 Problem . 3

1.2 Motivation . 4

1.3 Objectives . 5

1.4 Outline . 7

2 Related Work 8

2.1 edX . 8

2.2 Khan Academy . 13

2.3 Mastery Grids . 16

3 Requirements Analysis 18

3.1 Overview . 18

3.2 Current System . 18

3.3 Proposed System . 20

3.3.1 Functional Requirements 21

3.3.2 Non-functional Requirements 22

3.4 System Models . 23

3.4.1 Scenarios . 24

3.4.2 Use Case Model . 26

3.4.3 Analysis Object Model 29

3.4.4 User Interface . 32

4 System Design 48

4.1 Design Goals . 48

4.2 Subsystem Decomposition . 49

4.2.1 Server Subsystem Decomposition 49

4.2.2 Client Subsystem Decomposition 51

4.3 Persistent Data Management 52

4.4 Access Control . 56

ii

5 Object Design 58
5.1 Participant Scores . 58

6 Summary 62
6.1 Status . 62

6.1.1 Realized Goals . 64
6.1.2 Open Goals . 65

6.2 Conclusion . 65
6.3 Future Work . 65

iii

API Application Programming Interface

CSS Cascading Style Sheets

HTML Hypertext Markup Language

LA Learning Analytics

REST Representational State Transfer

UML Unified Modeling Language

URPS Usability Reliability Performance Supportability

1

Chapter 1

Introduction

The nowadays commonly accepted definition of learning analytics (LA) was
first offered at the 1st International Conference on Learning Analytics1:

”Learning analytics is the measurement, collection, analysis, and
reporting of data about learners and their contexts, for under-
standing and optimizing learning and the environments in which
it occurs.”

Compared to established analytical fields like business intelligence, LA is a
relatively new discipline [Sie13]. For a long time, learning was difficult to
analyze as students in traditional learning environments commonly left no
central digital trail. They might research online, watch tutorial videos, or
ask for help in a discussion forum, but the collected data is fragmented across
multiple platforms and thus not easily accessible for analytics.

This changed with the wide adoption of learning management systems
(LMSs) by higher learning institutions [Sie13] [CJB05]. Today, nearly ev-
ery university in Germany uses one or more LMSs to support their courses
[KTKK12]. These mostly web-based software applications deliver and man-
age all types of learning content, including lecture recordings, assignments,
and lecture slides. Advanced LMSs allow students to solve different types of
exercises directly within the application.

Data is generated, logged, and aggregated when a student uses a LMS.
Depending on the specific system, the collected data may include naviga-
tional patterns, click patterns, time spent, social interactions, document and
tool usage, artifacts produced and exercise results. This large amount of
behavioral data can then be analyzed by the system and is often presented
to the users in so-called learning analytics dashboards. Schwendimann et al.
defined them as:

1https://www.solaresearch.org/about/what-is-learning-analytics/

2

https://www.solaresearch.org/about/what-is-learning-analytics/

1.1. PROBLEM

”A learning dashboard is a single display that aggregates different
indicators about learner (s), learning process(es) and/or learning
context(s) into one or multiple visualizations.” [SRTV+16]

Artemis2 is an open-source LMS developed originally at the Chair for
Applied Software Engineering at the Technical University of Munich [KS18].
Today it is used by several higher learning institutions in Germany and Aus-
tria.

Instructors can create courses with associated learning resources (e.g. lec-
ture slides) and setup text, modeling, file-upload and programming exercises.
Students can solve these exercises directly within the application. This allows
instructors to use an interactive learning approach in their courses [KvFA17].
In this approach, lectures and exercises are combined into interactive classes
to encourage active student participation. The subsequent correction of stu-
dent submissions by teaching assistants is also managed in the application.
Since 2020, Artemis also supports the conduction of graded online exams.

1.1 Problem

The lack of important frames of reference for students, and the inflexible
lecture design are learning analytics related shortcomings of Artemis that
are addressed in this thesis.

Missing Frames of Reference for Students

A frame of reference is a comparison point used by students when evaluat-
ing their performance in a course [Wis14]. Several kinds are possible and
beneficial as a motivational tool to different types of student:

• Performance-orientation: Students compare their performance to
the rest of the class: ”How am I doing compared to the rest of the
class?”

• Mastery-orientation: Students view their performance in the context
of skill mastery: ”Have I mastered all the skills I should learn in this
course?”

• Self-orientation: Students compare their current performance to their
performance earlier in the class: ”Have I improved myself?”

2https://github.com/ls1intum/Artemis

3

https://github.com/ls1intum/Artemis

CHAPTER 1. INTRODUCTION

The only performance data presented to students in the current Artemis
version is their own current score in exercises. As no history of one’s own
performance is displayed, students find it difficult to use self-orientation.
Students are also not able to compare their performance to the performance
of other students. Thus, students can also not use performance-orientation.
Finally, students can also not use mastery-orientation as Artemis does not
support learning goals, i.e. competencies that students should master when
completing a course.

Inflexible Lecture Design

The concept of a lecture in the current Artemis version is limited. A lecture
has a title, a description and various attached files. In most cases, a lecture
in Artemis is used simply as a place to attach lecture slides. Other LMSs
are more flexible and allow instructors to provide students with multiple
kinds of lecture content. Lecture recordings, notes and related exercises can
be embedded directly on the lecture page. A good example of an LMS that
offers more flexibility is edX3, presented in Section 2.1. Since this is currently
not possible in Artemis, content is often scattered across multiple websites.
For example, the lecture recordings can be found on a video sharing platform,
the slides on the chair website and the exercises in Artemis.

1.2 Motivation

In the following section, we explain our motivation to tackle the described
shortcomings of Artemis.

Providing Multiple Frames of Reference to Students

Several studies in the field of educational research confirm that some students
are motivated by performance or self-orientation while others are motivated
by mastery-orientation [Pin00]:

Kim et al. [KJP16] and Corrin et al. [CDB15] have shown that being com-
pared with the class average had a positive motivational effect on students
below the average but no effect on highly-performing students. Contrasting
results were obtained by Tan et al. [TYKJ16]: Highly-performing students
were even more motivated by peer comparison, but low-performing students
felt demoralized. Instead, these students preferred when their performance
was compared to their performance earlier in the course or viewed in the

3https://www.edx.org/

4

https://www.edx.org/

1.3. OBJECTIVES

context of skill mastery. These contrasting results show that it is important
for Artemis to offer performance-orientation, self-orientation and mastery-
orientation to the student and let the student pick whats motivates her or
him the most.

The possibility of defining learning goals gives students the ability to use
mastery-orientation and supports instructors that want to use constructive
alignment.

Constructive alignment is a learning concept that focuses on learning
goals, i.e. competencies, that students should acquire. First, teachers should
define clear and realistic goals. Afterwards, exercises should be developed
that can be used to test the mastery of these goals. After that should the
actual lectures be designed. The design should ensure that the material
supports the students in achieving the defined goals [BT11]. Various studies
describe the positive effects of constructive alignment on learning outcome.
A good overview can be found in [Kan14].

Increasing Lecture Design Flexibility

One advantage of a more flexible lecture design is that the more learning
content can be made available in Artemis, the more precisely the student’s
learning behavior can be analyzed. For example, resource access (e.g. number
of downloads, video view count) is a common metric for how engaged students
are.

Embedding various content in a lecture also allows an instructor to divide
a long lecture into smaller thematically related chunks. For example, a chunk
could consist of a 15 minutes to 30 minutes video, the lecture notes and a
matching exercise. A lecture of several hours can be presented in a more
digestible way. This can also improve learning according to the cognitive
theory of multimedia learning [May05]. The positive effect of short videos
is also supported by studies such as one from Guo et al. [GKR14]. They
showed that students find shorter videos much more engaging than long
videos. Splitting up a lecture into small parts also supports the concept of
interactive learning. A course design concept that has been shown to increase
student participation by delivering small chunks of content and exercises in
short cycles [KSBB17].

1.3 Objectives

The following section describes how we address the problems described in
Section 1.1.

5

CHAPTER 1. INTRODUCTION

The first objective is to provide students with all three motivating frames
of reference. This is achieved via two visualizations in a learning analytics
dashboard:

The first visualization allows students to use performance-orientation, and
self-orientation for motivation. Figure 1.1 shows a mock-up. The horizontal
axis shows the various assignments ordered by release date. The vertical axis
shows the achieved points. By displaying both the student’s individual per-
formance (blue line), the class average (green line), and the best performance
in the class (dotted line), students can be motivated by self-orientation and
performance-orientation.

Figure 1.1: Mock-up of a visualization that gives students the ability to use per-
formance and self-orientation

The second visualization allows students to use mastery orientation. This
requires the introduction of learning goals in Artemis. Instructors can define
learning goals, i.e. competencies, that students should master. The sys-
tem will track a student’s progress in completing those goals. Students can
use a visualization to check their learning goal progress. Figure 1.2 shows a
mock-up. The color and fill level of the progress bars represent the achieved
progress.

The second objective is the lecture redesign. Instructors can embed notes,
lecture recordings, relevant exercises and files in a lecture. More of the learn-
ing process can happen inside Artemis.

6

1.4. OUTLINE

Figure 1.2: Mock-up of a visualization that gives students the ability to use
mastery-orientation

1.4 Outline

This section provides an overview of the structure of this thesis:
Chapter 2 Related Work describes other systems that serve as sources

of inspiration for the implementation in Artemis.
Chapter 3 Requirements Analysis is based on the requirements anal-

ysis document template described in [BD09]. We describe the current status
of Artemis and the requirements of the proposed system. Also, the user
interface of the proposed system is presented.

Chapter 4 System Design gives an overview of the design goals that
guide our implementation and describes several implementation aspects.

Chapter 5 Object Design describes in detail how we achieved the
performance design goal.

Chapter 6 Summary recaps our work. This chapter also includes a
progress overview of our implementation and ideas for the future.

7

Chapter 2

Related Work

This chapter presents existing systems that serve as a source of inspiration
for solving the problems described in Section 1.1.

2.1 edX

edX1 is a non-profit platform for Massive Open Online Courses (MOOCs),
founded in 2012 by the Harvard University and the Massachusetts Institute of
Technology. More than 150 universities (including the Technical University
of Munich), nonprofit organizations, and corporations offer over 2800 courses
on the platform.2 edX runs on the Open edX open-source software platform.3

The platform offers instructors the possibility to add several kinds of
content to their MOOCs. Therefore it is a source of inspiration for the
redesign of lectures in Artemis.

Figure 2.1 shows on the left side the view of a course in the edX edi-
tor (called edX Studio) and on the right side how a student would see this
course. A course in edX is divided into sections. Sections (1) are divided
into subsections (2), which in turn contain one or more units (3). A unit
contains one or more components.

edX offers four basic types of components:

• Discussion components allow students to discuss with each other.

1https://www.edx.org/
2https://www.edx.org/schools-partners
3https://open.edx.org/
4Taken from https://edx.readthedocs.io/projects/

open-edx-building-and-running-a-course/en/open-release-juniper.master/

developing_course/course_subsections.html

8

https://www.edx.org/
https://www.edx.org/schools-partners
https://open.edx.org/
https://edx.readthedocs.io/projects/open-edx-building-and-running-a-course/en/open-release-juniper.master/developing_course/course_subsections.html
https://edx.readthedocs.io/projects/open-edx-building-and-running-a-course/en/open-release-juniper.master/developing_course/course_subsections.html
https://edx.readthedocs.io/projects/open-edx-building-and-running-a-course/en/open-release-juniper.master/developing_course/course_subsections.html

2.1. EDX

Figure 2.1: The course structure in edX4

• HTML components allow instructors to add formatted text and im-
ages.

• Problem components allow instructors to add different types of exer-
cises, from simple multiple-choice quizzes to more complex exercises.

• Video components allow instructors to add videos.

Figure 2.2 shows an example of a unit page in edX containing a (1)
video component, (2) a text component, (3) a problem component, and (4)
a discussion component.

The different components can be added and ordered in the edX Editor.
Figure 2.3 shows how a video component can be created. An instructor

has to give the component a title and provide an URL to the uploaded video.
The video will then be embedded on the component page.

Figure 2.4 shows how an HTML component can be created. An instructor
can enter the text and images using a ”What You See Is What You Get”
editor or even enter HTML directly. The HTML is rendered when the student
opens the component.

Figure 2.5 shows how a simple problem component for a multiple choice
quiz is created. Simple exercises can be defined using an edX studio-specific
markup language that converts the markup syntax into exercises.

This modular approach allows the instructor to assemble the lecture page
as desired. Thus edX can be used for a variety of teaching methods.

9

CHAPTER 2. RELATED WORK

Figure 2.2: Example of a unit page in edX

10

2.1. EDX

Figure 2.3: Example of the video component editor in edX

Figure 2.4: Example of the HTML component editor in edX

11

CHAPTER 2. RELATED WORK

Figure 2.5: Example of the multiple choice problem component editor in edX

12

2.2. KHAN ACADEMY

2.2 Khan Academy

Khan Academy5 is a non-profit organization founded in 2006 by Salman
Khan. The website offers free courses in mathematics, computer science, nat-
ural sciences, and humanities in 46 languages. According to its own data6,
the website has more than 115 million registered users and nearly 20 mil-
lion learners per month. As of 2020, the platform had 429 courses. This
includes over 13,000 videos and over 74,000 exercises.7 Instructors can use
Khan Academy for teaching support. They can set up classrooms on the
platform. This then allows them to assign Khan Academy courses to their
students. Instructors can track their students’ progress as they work through
the material.

Although Khan Academy is not a learning management system in the
classical sense, it is interesting for this thesis because it tries to implement
mastery learning through learning analytics and heavy use of gamification.
Therefore, it is a source of inspiration for the implementation of mastery
orientation and learning goals in Artemis.

Mastery learning is a teaching technique popularized by Benjamin Bloom
[Blo68] and closely related to the concept of constructive alignment men-
tioned in Chapter 1. Mastery learning is focused on personalized, self-paced
learning for students. Class time is held constant in traditional teaching,
accepting that the material’s mastery level will vary among students. Some
students will have a good understanding of the material, while others will
have gaps in their learning. The goal of mastery learning is to vary the
instructional time and achieve a largely constant mastery level of the ma-
terial among all students. To achieve this, the material is broken down
into small units with defined learning goals (competencies that the student
should achieve). Students must demonstrate through assignments that they
have achieved a sufficient mastery level (usually 80%) before moving on to
the next unit. If students do not reach the desired mastery level, they are
supported with further assignments, tutoring, and material. This instruct-
assess cycle repeats itself until the student achieves mastery in the complete
material [Akp20] [Dor20].

Mastery learning in Khan Academy is implemented using the concept of
skills and mastery points. Skills are competencies that students should gain
while working through a course unit. As the student practices skills and
answers questions in quizzes, unit tests, and course challenges, the level for
that skill increases (or decreases if the student answers questions incorrectly).

5https://www.khanacademy.org/
6https://support.khanacademy.org/hc/en-us/articles/202483630
7https://khanacademyannualreport.org/

13

https://www.khanacademy.org/
https://support.khanacademy.org/hc/en-us/articles/202483630
https://khanacademyannualreport.org/

CHAPTER 2. RELATED WORK

Mastery points are earned by increasing one’s skill level.

Figure 2.6: A course overview page in Khan Academy8

Figure 2.6 shows a course overview page in Khan Academy. The page
shows (1) the overall fraction of mastery points that the student achieved and
(2) the percentage of the course mastered. Students can see their mastery
progress in each unit of the course as a progress bar on the left-hand side.
The individual units and their lessons are listed on the right-hand side. A
course (e.g., Algebra I) in Khan Academy consists of several units (e.g.,
Algebra foundations), which consist of several lessons (e.g., Introduction to
variables). A lesson, on the other hand, consists of exercises, articles, and
videos.

If a student clicks on an individual unit, they are taken to the unit
overview page. Figure 2.7 shows a unit overview page in Khan Academy.
The page shows (1) the absolute and relative amount of mastery points
achieved in this unit, (2) the skill summary, which enables the student to
see their progress in skills, and (3) the exercises that allow the student to
practice skills. The skill progress is communicated through a crown sym-
bol. The goal of a student is to fill the crown for each skill and thus achieve

8Taken from https://support.khanacademy.org/hc/en-us/articles/

115002552631-What-are-Course-and-Unit-Mastery-
9Taken from https://support.khanacademy.org/hc/en-us/articles/

115002552631-What-are-Course-and-Unit-Mastery-

14

https://support.khanacademy.org/hc/en-us/articles/115002552631-What-are-Course-and-Unit-Mastery-
https://support.khanacademy.org/hc/en-us/articles/115002552631-What-are-Course-and-Unit-Mastery-
https://support.khanacademy.org/hc/en-us/articles/115002552631-What-are-Course-and-Unit-Mastery-
https://support.khanacademy.org/hc/en-us/articles/115002552631-What-are-Course-and-Unit-Mastery-

2.2. KHAN ACADEMY

Figure 2.7: A unit overview page in Khan Academy9

mastery. The learning material (videos or articles) for each unit are listed in
the middle of the page. The student can see his or her progress in working
through the material using small progress bars and ticks.

When a student clicks on the question mark next to the skill summary,
it is explained how the mastery calculation works. Figure 2.8 shows the
explanation Khan Academy gives students about the different skill levels. A
student can achieve up to 100 mastery points for each skill.

15

CHAPTER 2. RELATED WORK

Figure 2.8: An explanation of the skill mastery levels in Khan Academy

2.3 Mastery Grids

An interesting learning visualization approach is Mastery Grids [LGHB14]
developed by the Personalized Adaptive Web Systems (PAWS) group at the
University of Pittsburgh10. Using this visualization, students can use self-
orientation, mastery-orientation, and performance-orientation. This visual-
ization is as a source of inspiration for the implementation of the learning
analytics dashboard in Artemis.

Figure 2.9 shows a Mastery Grids example. Course content is organized
into topics (e.g., Variables), displayed as columns in the grid. The first row
labeled ”me” shows the student’s topic by topic progress using shades of green
color—the darker the color, the higher the progress. The last row labeled
”group” shows the rest of the class’s aggregated progress in blue color shades.
The second row, labeled ”me vs. group,” presents a differential color that
compares the student’s progress to the overall class progress. The student
has higher progress than the rest of the class, where the second-row cells
are green, but the class has higher progress where the second-row cells are

10http://adapt2.sis.pitt.edu/wiki/Mastery_Grids_Interface
11Taken from http://adapt2.sis.pitt.edu/wiki/Mastery_Grids_Interface

16

http://adapt2.sis.pitt.edu/wiki/Mastery_Grids_Interface
http://adapt2.sis.pitt.edu/wiki/Mastery_Grids_Interface

2.3. MASTERY GRIDS

Figure 2.9: Mastery Grids visualization with overall resources shown11

blue. The student has the same progress as the rest of the class in topics
with the light gray color. If a student hovers the mouse over a topic cell, the
student can see the personal progress and the group’s progress in a tool-tip
and a neighboring bar chart. The student can also see the ordered individual
progress of all students in a second grid at the bottom. The student with the
highest progress is at the top of the list, the student with the lowest progress
is at the bottom of the list.

Mastery Grids also offers a more detailed view that shows the progress cat-
egorized by content type (e.g., Problems, Examples). An example is shown
in Figure 2.10.

Figure 2.10: Mastery Grids visualization with all resources shown12

12Taken from http://adapt2.sis.pitt.edu/wiki/Mastery_Grids_Interface

17

http://adapt2.sis.pitt.edu/wiki/Mastery_Grids_Interface

Chapter 3

Requirements Analysis

This chapter follows the process of requirements elicitation and requirements
analysis described in [BD09]. Section 3.1 provides a summary of the planned
system. Then we begin by analyzing the current system in Section 3.2, before
describing the proposed system’s requirements in detail in Section 3.3. This
chapter concludes with Section 3.4, where we present the user interface and
develop the application domain’s system models.

3.1 Overview

As stated in Section 1.3, we want to achieve two goals with the proposed
system:

We want to motivate students to do better in a course by providing them
with all three frames of reference (self, performance, and mastery) using a
new learning analytics dashboard. The mastery frame of reference requires
the implementation of learning goals. Success is achieved if instructors can
define learning goals and students can use the three frames of reference to
motivate themselves.

We also want to redesign the concept of a lecture in Artemis. In the
proposed system, instructors can embed various content directly in a lec-
ture. Success is achieved if instructors can include recordings, notes, related
exercises, and files in a lecture.

3.2 Current System

We do refer to version 4.5.2 as the current Artemis version.
A lecture in the current version consists of a title, a description, and file

attachments. Students can post questions on the lecture page, which tutors

18

3.2. CURRENT SYSTEM

can then answer. Figure 3.1 shows an example of a lecture page.

Figure 3.1: A lecture page in Artemis version 4.5.2

Artemis offers students in the current version a course statistics page,
which shows their momentary achieved points in exercises. They cannot
compare themselves with the rest of the course or see if their performance
has improved or deteriorated. Figure 3.2 shows an example of the course
statistics page. There is also no way for instructors to define learning goals
in the system.

19

CHAPTER 3. REQUIREMENTS ANALYSIS

Figure 3.2: The course statistics page in Artemis version 4.5.2

3.3 Proposed System

When an instructor creates a lecture in the proposed system, they can add
notes, recordings, related files, and exercises. The student can then access
this content via the lecture page.

To provide students with mastery-orientation, the proposed system intro-
duces the concept of learning goals. A learning goal represents a competency
that students are expected to master in the course. Instructors can define
these goals and connect them to relevant lecture content. The system calcu-
lates a student’s progress in achieving the learning goals, and this information
is available in the learning analytics dashboard.

In the dashboard, students are able to see the development of their per-
sonal performance, the average course performance, and the best performance
in the course with the help of a visualization. This allows them to use self-
orientation and performance-orientation.

Instructors can use the dashboard to track the course’s performance and
average learning goal progress.

The following sections list the functional and non-functional requirements
of the proposed system. The requirements are derived from the user’s view.

20

3.3. PROPOSED SYSTEM

3.3.1 Functional Requirements

This section lists the functional requirements (FRs) of the proposed system.
The FRs are described independently of the concrete implementation. We
divide the FRs into three parts. First, we list those for the lecture redesign.
Those for the learning goals and finally those for the learning analytics dash-
board.

Lecture Redesign

FR1.1 Provide lecture recordings to students: An instructor can provide
students with lecture recordings by adding them to a lecture. A student
can watch the lecture recordings on the lecture page.

FR1.2 Provide lecture notes to students: An instructor can provide stu-
dents with lecture notes by adding formatted text and images to a
lecture. A student can read the lecture notes on the lecture page.

FR1.3 Provide files to students: An instructor can provide students with
files by attaching them to a lecture. A student can download the files
on the lecture page.

FR1.4 Provide related exercises to students: An instructor can mark
exercises related to a lecture. A student can see the related exercises
on the lecture page.

FR1.5 Track lecture completion progress of students: Instructors can
track how far their course is in working through a lecture: Have they
watched all the videos, read all the notes, etc.? Students can see what
they still need to do within a lecture.

FR1.6 Set release date: An instructor can give individual lecture content
a release date. The content will be hidden for students on the lecture
page until the specified date.

Learning Goals

FR2.1 Define learning goals: An instructor can define learning goals, i.e.,
competencies students should master. He or she can then link the goals
to relevant lecture content. Students can see the goals of the course
and the linked lecture content.

21

CHAPTER 3. REQUIREMENTS ANALYSIS

FR2.2 Progress in learning goals: A student can progress in a learning
goal by working through the linked content. A learning goal is consid-
ered completed if the student has completed all the linked content (i.e.
watched all videos, read all notes, downloaded all files and completed
all exercises).

FR2.3 Define learning paths: An instructor can link learning goals to
create learning paths. For example, the learning goals ”CSS” and
”HTML” can be defined as recommended prerequisites for the learning
goal ”JavaScript.”

Learning Analytics Dashboard

FR3.1 View development of own exercise performance: Students can
see how their performance in exercises has developed over the duration
of the course. This enables students to use self-orientation.

FR3.2 View course exercise performance development: Instructors and
students can see how the average and best performance of students in
exercises has developed over the course duration. This enables students
to use performance-orientation and gives instructors an overview of how
their class is performing.

FR3.3 View own learning goal progress: Students can see their own
progress in achieving each learning goal. This enables students to use
mastery-orientation.

FR3.4 View course learning goal progress: Students and instructors can
see the average progress of the course for each learning goal.

3.3.2 Non-functional Requirements

This section describes the requirements of the proposed system that are not
related to functionality. We categorize the non-functional requirements using
the URPS (Usability Reliability Performance Supportability) model. This
model is used by the Unified Process [JBR99] and is described in [BD09].

Lecture Redesign

NFR1.1 Usability (Efficiency): Students see all the lecture content directly
on the lecture page without having to navigate to other pages.

22

3.4. SYSTEM MODELS

NFR1.2 Reliability (Robustness): An instructor should not lose any data
when he or she is in the process of adding content to a lecture and the
connection to Artemis is lost.

NFR1.3 Supportability (Adaptability): A developer should be able to add
new types of lecture content in the future without having to touch the
code of the existing lecture content types.

NFR1.4 Supportability (Learnability): The various types of lecture content
should have a common look and interaction pattern.

NFR1.5 Performance (Response Time): Loading a lecture page with 5 lec-
ture recordings, 5 lecture notes, and 5 related exercises should take no
more than 0.5 seconds.

Learning Goals

NFR2.1 Usability (Efficiency): It should not take an instructor more than
three clicks to create a new learning goal.

NFR2.2 Usability (Efficiency): An instructor should be able to connect a
learning goal with multiple pieces of lecture content in one step (i.e.,
without having to navigate between several pages).

NFR2.3 Usability (Learnability): The user interface for learning goals should
visualize the progress in a comprehensive way.

Learning Analytics Dashboard

NFR3.1 Performance (Response Time): Loading the learning analytics
dashboard page for a course with 2000 students, 50 exercises, and 10
learning goals should not take more than 3 seconds.

NFR3.2 Usability (Learnability): The information on the learning analytics
dashboard should be understandable for students without having to
read any manual.

3.4 System Models

This section uses various types of system models to provide a functional
specification of the proposed system. These models are independent of the
actual implementation.

23

CHAPTER 3. REQUIREMENTS ANALYSIS

3.4.1 Scenarios

Scenarios provide an informal description of specific system functionality
from an actor’s point of view [BD09]. Visionary scenarios describe sophisti-
cated functionality that is ideal but hard to realize in this thesis’s scope. On
the other hand, demo scenarios describe functionality that can be realistically
implemented.

Visionary Scenario: Adaptive Learning

The following visionary scenario describes how adaptive learning is used to
deliver a customized learning experience. In this case, Artemis dynamically
adapts the difficulty level of exercises to the respective student.

It is the middle of the third semester. Simon is studying computer science
at the Technical University of Munich. He attends the course ”Introduction
to Algorithms,” which uses Artemis. The next lecture, Simon wants to work
on is on the topic of graph algorithms. After watching the lecture record-
ings and reading the notes, he starts the graph algorithms exercise sequence.
First, he is given a simple coding exercise. Simon needs several hints, at-
tempts, and much time to solve the exercise. The system analyses Simon’s
solution (How many mistakes did he make? How long did it take him? How
many attempts did he need? How many hints did he use?) and decides that
Simon is not yet ready to solve exercises of medium difficulty. Therefore, he
is given a new easy exercise next. In the course of further easy exercises, Si-
mon gets better and better until the system finally presents medium difficulty
exercises. This adaptive process continues until Artemis recommends Simon
to move on to the next topic, as he has already mastered graph algorithms.
Simon follows the recommendation and starts the next topic.

Visionary Scenario: Detecting At-Risk Students

The following visionary scenario describes how enhanced learning analytics
could help students who are identified as being at risk of dropping out of a
course.

It is the middle of the first semester. Christian is studying computer
science at the Technical University of Munich. He attends the course ”Intro-
duction to Programming,” which uses Artemis. He found the assignments
relatively easy in the beginning, and he was able to complete them well.
However, in the last two weeks, the topics have become more complicated,
and he can no longer keep up well. Since he is demotivated, he neglects the
course. He is doing worse and worse in the assignments and hardly deals

24

3.4. SYSTEM MODELS

with the lecture material. Artemis detects the change in Christian’s behav-
ior (e.g., decreased interaction with the lecture material and deteriorating
results). The system calculates that he has a high probability of dropping
out of the course soon. Therefore, the system informs professor Stephan by
email. Stephan then opens Artemis and looks at the data on Christian. As
he agrees with the system that Christian is in danger of dropping the course,
he contacts Christian by e-mail and tells him that he is welcome to come
to his weekly office hours to talk about problems with the course material.
Christian did not know about the weekly office hours and accepts the offer.
The tips he receives motivate him, his performance improves again, and he
successfully completes the course.

Demo Scenario: Creating an Online Lecture With Different Types
of Content

The following demo scenario describes how an instructor can use the more
flexible lecture design.

It is a week before the start of the semester, and Stephan is an instructor
for the course ”Basics of Web Development” at the Technical University
of Munich. Due to the global coronavirus pandemic, the lecture will be
held completely online this semester. He has decided to use Artemis and
is currently setting everything up. He has already created the course and
the first exercises. Only the first lectures are still missing. He is currently
preparing the first lecture about the basics of HTML. He already recorded
himself holding this multiple-hour-long lecture. Instead of just uploading the
whole multiple-hour video to YouTube and the slides to Artemis, he wants
to use the new lecture format.

As he has read that it is pedagogically useful to divide an online lecture
into several thematically self-contained chunks, he splits the video and the
lecture slides. For example, the first chunk deals with HTML syntax, the
second with the Document Object Model, and so on. After splitting the
multiple-hour lecture into smaller parts, he creates the lecture in Artemis.
He decides on the following structure for each part of the lecture: First
the lecture recording, then lecture notes containing the information from
the slides, and finally a related exercise so students can immediately test
if they have understood the material. For the video, he uploads the video
to YouTube and inserts the URL into Artemis. He uses the material in his
lecture slides to create the lecture notes in Artemis. For the exercise, he
selects the course exercises he wants to integrate into the lecture. He also
uploads the full lecture slides as a PDF for people who want everything in
one file.

25

CHAPTER 3. REQUIREMENTS ANALYSIS

It is the first lecture, and Max, a student, opens the lecture page in
Artemis. He sees the video, lecture notes, and related exercises embedded in
the lecture page. As the videos are all relatively short (30 minutes maximum),
he is motivated to start working on the lecture. He also finds it great to
practice the things he has learned right away in the linked exercises. Since
he prefers to read longer texts as PDFs, he downloads the slides and reads
them on his tablet.

Demo Scenario: Viewing the Student Learning Analytics Dash-
board

The following demo scenario describes how different types of students can
use the student learning analytics dashboard to motivate themselves.

It is the middle of the semester, and the students Alex, Bob and Kristina
are taking the course ”Basics of Web Development.”

Kristina is an outstanding student with an enormous amount of ambition.
She wants to be one of the best students in every course. That is why
she is pleased that she can check at any time in Artemis how she is doing
compared to her fellow students. She opens the learning analytics dashboard
and sees that she had not the best performance in the last two exercises.
This motivates her to do even better, and she resolves to study even more.

Bob is a hands-on student. He wants to work as a web developer one day
and is therefore interested in whether he has mastered all the skills that the
course is supposed to teach. He opens the learning analytics dashboard and
sees that he is already advanced in the learning goal HTML but still lags in
the learning goal CSS. Therefore, he plans to focus on achieving this learning
goal in the next learning session at the weekend.

Alex has little experience in web development and does not want to be
demotivated by comparing himself to other students with much more expe-
rience. His goal is to continuously work on his skills. He opens the learning
analytics dashboard and sees that he has got better scores in the exercises
this week compared to last week. This encourages to continue studying and
get even better.

3.4.2 Use Case Model

This section describes the functional requirements listed in Section 3.3.1 us-
ing UML use case diagrams. Use case diagrams model the system’s func-
tionality at a high level of abstraction from the so-called black box view
of the user [BD09]. Only those use cases are defined that an external user
can perceive and whose execution brings him or her a recognizable benefit.

26

3.4. SYSTEM MODELS

The models describe what use cases the system offers and not how they are
implemented in the system.

Lecture Redesign

Figure 3.3 shows the use cases for the redesigned lectures. Only files (e.g.,
lecture slides as PDFs) can be added to a lecture in the current system. The
proposed system offers more flexibility in the content that can be added to a
lecture. Instructors can provide students with recordings, notes, and related
files. They can also suggest related exercises. Students who open the lecture
page can watch the recordings, read the notes, download the related files and
do the suggested exercises. The system measures a student’s interaction with
the content (e.g., how much of a recording a student has already watched) and
calculates the student’s progress in working through the lecture. A student
can see which parts he or she still has to work on to complete the lecture. An
instructor can track the average progress of students as they work through
the lecture.

Existing Modified New
Legend

Artemis

View own lecture
completion progress

Create Lecture

Student

View Lecture

Instructor

View average lecture
completion progress

of course

<<extend>>

Provide
 recording

<<extend>>

Provide
notes

<<extend>>

Provide related
files

<<extend>>

Provide related
exercises

<<extend>>

Watch recording

<<extend>>

Read notes

<<extend>>

Download related
files

<<extend>>

Do related exercises

Figure 3.3: Use case diagram of the lecture redesign in the proposed system

Learning Goals

Figure 3.4 shows the use cases for the learning goals. An instructor can
define learning goals for a course and link those to lecture content. When the

27

CHAPTER 3. REQUIREMENTS ANALYSIS

student works through a lecture’s content, the student can see what learning
goals this content is related to. By working through the linked content (e.g.,
completing relevant exercises), the student increases his or her progress in
the learning goal. A learning goal is considered completed when the student
completes all the connected material.

Existing Modified New
Legend

Artemis

Student

Instructor

<<include>>
Create Learning Goal Link lecture content

,<<include>>

Work through lecture
content

View related learning
goals

Progress in related
learning goals

View Lecture

,<<include>>

,<<include>>

Figure 3.4: Use case diagram of the learning goals in the proposed system

Learning Analytics Dashboard

Figure 3.5 shows the use cases for the learning analytics dashboard. Stu-
dents can use the dashboard to compare the development of their own per-
formance in exercise with the course’s average and best performance. They
can also see their progress towards completing the learning goals. Instructors
can use the dashboard to check the average progress and performance of their
students.

28

3.4. SYSTEM MODELS

Existing Modified New
Legend

Artemis Learning Analytics Dashboard

Student

Instructor

View own
progress in learning goals

View average
progress in learning goals

View timeline of average
and best exercise

performance

View timeline of
own exercise performance

Figure 3.5: Use case diagram of the learning analytics dashboard in the proposed
system

3.4.3 Analysis Object Model

This subsection discusses the analytics object model with the help of UML
class diagrams. It represents the main concepts that are visible to users
when using the system [BD09]. Implementation-specific details like return
types and access modifiers are omitted from the UML models, as the analysis
object model is on the application domain level.

Figure 3.6 shows the most important attributes and methods of the enti-
ties and their relationships with each other.

Instructors can add lectures to a course and different types of lecture
content in turn to a lecture. When a student engages with lecture con-
tent, Artemis tracks the interaction and determines the content completion
progress. The condition when a lecture content can be considered completed
is different for each type of content.

An instructor can define learning goals for a course in the proposed sys-
tem. Learning goals represent competencies that a student should master.
The instructor can link goals to relevant lecture content. The content com-
pletion progress of the linked lecture content is used to calculate a student’s
progress in mastering a learning goal. A learning goal is considered mastered

29

CHAPTER 3. REQUIREMENTS ANALYSIS

when the student has completed all the linked lecture content. Instructors
can combine different learning goals to form learning paths. Different types of
relationships can be defined. For example, one learning goal can be marked
as a recommended prerequisite for another learning goal.

Lecture Content

title

releaseDate

 completionCondition

Existing Modified New
Legend

Lecture

title

Course

title

Learning Goal

title

descriptionOfCompetency

used for determining
goal mastery progress

Learning Goal Mastery Progress

currentMasteryProgress

calculate()

*

Learning Path Edge

relationshipType

*

Content Completion Progress

 currentCompletionProgress

track()

*

*

*
**

*

*

Figure 3.6: Analysis object model of the proposed system

Figure 3.7 shows the different lecture content types and the associated
progress measurements. In the current system, only files can be added to a
lecture. In the proposed system, video recordings and notes can now also be
added. Exercises can be marked as belonging to a lecture. A video recording
is considered completed when the student has watched it completely. A note

30

3.4. SYSTEM MODELS

is considered completed when it has been read in full by the student. A
file is considered completed when it has been downloaded at least once by
the student. For an exercise, the score achieved can be used as a progress
measure. An exercise could be considered completed when the student has
achieved more than 90 % of the points. The results of exercises already exist
in the system, so no new tracking mechanism is needed.

Lecture Content

title

releaseDate

 completionCondition

Video Recording

description

video

watch()

Note

formattedText

images

read()

Exercise

maxPoints

maxBonusPoints

start()

File

description

URL

download()

Content Completion Progress

 currentCompletionProgress

track()

Exercise Completion Progress

scoreAchieved

Notes Completion Progress

percentRead

Video Completion Progress

percentWatched

File Completion Progress

isDownloaded

*

Figure 3.7: Detailed analysis object model of the new types of lecture content
and their progress measurements in the proposed system

31

CHAPTER 3. REQUIREMENTS ANALYSIS

3.4.4 User Interface

This section describes the user interface of the proposed system. As the
proposed system is already implemented at the time of writing, we present
the new system’s actual interface and not mock ups.

Lecture Redesign

Student View

Figure 3.8 shows how a lecture page with different types of content looks
from a student’s perspective. The content can be seen in a column on the
left. Highlighted in the figure is a lecture note (1), a lecture recording (2),
the downloadable lecture slides (3), and a relevant exercise (4). The different
types of content have a similar appearance and can all (except for exercises)
be expanded and collapsed by clicking on the title. In the example, the lecture
recording (2) and the file (3) are expanded, the note (1) is still collapsed.
Students can recognize if the content is linked to a learning goal by a flag
symbol (5). They can obtain more information by clicking on the flag. As
in the current system, students can ask questions about the lecture content
(6), which other users can then answer.

32

3.4. SYSTEM MODELS

Figure 3.8: Example of a lecture page in the proposed system

33

CHAPTER 3. REQUIREMENTS ANALYSIS

Figure 3.9 shows the lecture note again in expanded form. It contains for-
matted text and embedded images. The student can click on ”View Isolated”
to open the note on a separate page for better printing and reading.

Figure 3.9: Example of a lecture note in the proposed system

34

3.4. SYSTEM MODELS

Instructor View

Figure 3.10 shows how instructors can modify lecture content in the proposed
system. In the figure, the lecture note (1), the recording (2), the presentation
slides (3), and the relevant exercise (4) are again marked. The instructor can
change the content order by using the arrows (7). The buttons on the right
side of the arrows can be used to edit or delete content. By clicking on the
flag (5), the instructor can see the linked learning goals. New content can be
added by clicking on the corresponding button in the toolbar at the bottom
of the screen (6). The corresponding creation page of the content type will
open.

35

CHAPTER 3. REQUIREMENTS ANALYSIS

Figure 3.10: Example of lecture content editing in the proposed system

36

3.4. SYSTEM MODELS

Figure 3.11 shows how videos can be added to a lecture in the proposed
system. The instructor can give the video a title, a description, and a release
date. Most video sharing platforms offer a special embeddable version of the
video URL to embed a video on other websites. The instructor can enter
such an embeddable URL directly or input a standard video URL and let
Artemis generate an embeddable version from it by clicking on the arrow.

Figure 3.11: Example of how a video can be added to a lecture in the proposed
system

37

CHAPTER 3. REQUIREMENTS ANALYSIS

Figure 3.12 shows how a file can be uploaded and added to a lecture in the
proposed system. The instructor can give the file a title, a description, and
a release date. If an optional notification text is entered, Artemis will notify
all registered students in the course. The version field increments when the
instructor makes changes to the uploaded file.

Figure 3.12: Example of how a file can be added to a lecture in the proposed
system

38

3.4. SYSTEM MODELS

Figure 3.13 shows how a note can be added to a lecture in the proposed
system. The instructor can give the note a title and a release date. Text
formatting is defined using Markdown1 syntax. Images can be uploaded and
embedded in the text by dragging and dropping them on the editor. The
content will be converted to HTML for presentation when the student opens
the lecture page.

Figure 3.13: Example of how a note can be added to a lecture in the proposed
system

1https://daringfireball.net/projects/markdown/

39

https://daringfireball.net/projects/markdown/

CHAPTER 3. REQUIREMENTS ANALYSIS

Figure 3.14 shows how exercises are added to a lecture in the proposed
system. The instructor has to select the corresponding exercises in the table
in order to add them to the lecture.

Figure 3.14: Example of how exercises can be added to a lecture in the proposed
system

40

3.4. SYSTEM MODELS

Learning Goals

Student View

Figure 3.15 shows the learning analytics dashboard section where students
can see the learning goals of the course. Each learning goal is shown in the
form of a card. The cards are arranged dynamically depending on the size
of the user’s screen. In the example, the instructor has defined five learning
goals for the course. The student’s learning goal mastery progress is shown
using circular progress bars.

Figure 3.15: Example of the learning goal section in the learning analytics dash-
board in the proposed system

When a student clicks on a goal card, a modal window opens with more
information. An example is shown in Figure 3.16. The student can see to
which lecture content the learning goal is linked to. In the example, these
are only exercises. The student gets an overview of his or her lecture content
completion progress. This progress is used to calculate the mastery progress
of the learning goal.

41

CHAPTER 3. REQUIREMENTS ANALYSIS

Figure 3.16: Example of the modal that opens when a student clicks on a learn-
ing goal in the proposed system

42

3.4. SYSTEM MODELS

Instructor View

Figure 3.17 shows an example of the learning goal management page. The
page has a similar look to the learning goal section in the learning analytics
dashboard, but the progress displayed is the course’s average goal mastery
progress.

Figure 3.17: Example of the learning goal management page in the proposed
system

When an instructor clicks on a goal card, a modal opens with more infor-
mation. Figure 3.18 shows an example. The instructor can see the average
completion progress of the linked lecture content. The instructor can also de-
termine how many students have interacted in some form with the respective
content.

43

CHAPTER 3. REQUIREMENTS ANALYSIS

Figure 3.18: Example of the modal that opens when an instructor clicks on a
learning goal in the proposed system

44

3.4. SYSTEM MODELS

A new learning goal can be created by clicking on the plus button on the
management page. Changing or deleting a goal is done with the buttons at
the bottom of each card. Figure 3.19 shows an example of the learning goal
edit page. The goal can be linked to lecture content by selecting the content
in the table at the bottom of the screen. In the example, the learning goal is
linked to four exercises from the lecture ”L10 Edge Computing in Industry”.

Figure 3.19: Example of the learning goal editor in the proposed system

45

CHAPTER 3. REQUIREMENTS ANALYSIS

Exercise Performance Chart

Figure 3.20 shows the exercise performance chart. This chart can be found
in the learning analytics dashboard. On the horizontal axis, the exercises
are listed in ascending order according to their release date. Using the scroll
bar below the chart, a user can scroll through the exercises of the course.
The vertical axis shows the achieved result in percent. A student can use the
visualization to determine how the development of their own performance
(blue) compares to the development of the average (red) and best (green)
performance in the course. By clicking on a data point, the student can
navigate to the respective exercise page for more information.

46

3.4. SYSTEM MODELS

F
ig
u
re

3
.2
0
:

E
x
a
m

p
le

of
th

e
ex

er
ci

se
p

er
fo

rm
an

ce
ch

ar
t

in
th

e
p

ro
p

os
ed

sy
st

em

47

Chapter 4

System Design

This chapter presents the mapping of the application domain concepts from
Chapter 3 to the solution domain. It follows the System Design Document
Template described in [BD09].

The proposed system does not change the core technologies used for the
implementation of Artemis. Artemis uses a client-server architecture. In the
client, the Typescript-based web application framework Angular is mainly
used. In the server, the application framework Spring Boot with the pro-
gramming language Java is used. MySQL is used as a relational database,
with Hibernate as an object-relational mapping tool. Client and server com-
municate via REST APIs and web sockets.

4.1 Design Goals

In this section, we present the design goals that guide the implementation
of the proposed system. These goals are derived from the non-functional
requirements described in Section 3.3.2. Design goals are an important basis
for decision-making in development, as there are always various alternative
implementation options [BD09]. The design goals are presented in descending
order of priority:

1. Performance: Students will not regularly use the learning analytics
dashboard if the page does not load quickly (NFR 3.1). The redesigned
lecture page will only be positively received if students can access the
content without long loading times (NFR 1.5). Therefore achieving
good performance is the most important design goal.

2. Usability: It is a challenge to get existing users to use new features.
Good usability can help to increase the adoption rate. Therefore, high

48

4.2. SUBSYSTEM DECOMPOSITION

usability for both students and instructors is an important design goal
in the lecture redesign (NFR 1.1), the learning goals (NFR 2.2 and
NFR 2.3), and the learning analytics dashboard (NFR 3.2).

We also have made some design goal trade-offs:

• Functionality vs. Usability: As mentioned above, high usability
is a crucial for achieving a high adoption rate of new features. That
is why we choose a simple and understandable user interface over a
complex user interface with many configuration options.

• Rapid Development vs. Functionality: At the end of the 5-month
work period, the new system’s core features should be fully usable.
Therefore, it is important to implement the core features first. Non-
core functionality can be dropped from the proposed system to meet
the schedule.

4.2 Subsystem Decomposition

To make the complexity of the solution domain manageable, the system
is divided into subsystems. Subsystems are groupings of related solution
domain classes. Each subsystem is described by the services it provides
to other subsystems. Services are a grouping of several operations with a
common goal [BD09]. This section describes the subsystem decomposition
of the proposed system.

To create the subsystem decomposition, we look at the use cases, func-
tional requirements, and non-functional requirements described in Chapter 3.
The design goals described in Section 4.1 help us to decide between imple-
mentation alternatives.

Figure 4.1 shows the subsystem decomposition of the proposed system.
In the upper half of the figure, the client’s subsystem decomposition can be
seen, and in the lower half, that of the server. Client and server communicate
via REST APIs. The services that offer a REST API can be seen in the area
between client and server.

4.2.1 Server Subsystem Decomposition

When we look at the functional requirements and use cases described in
Chapter 3, we can identify the need for a lecture content subsystem that
deals with the new types of content that can be added to a lecture. Instead

49

CHAPTER 4. SYSTEM DESIGN

Artemis
Application
Server

Existing Modified New
Legend

Artemis Client

Learning Goal
Progress

Visualization

Learning Analytics
Dashboard View

Course
Overview

Participant
Score

Service

Exercise
Performance
Visualization

Lecture

Lecture
Management

View
Lecture View

Lecture Content
View

Learning
Goal

Learning Goal
View

Learning Goal
Management

View

Lecture
Service

LectureParticipant Score

Content Completion
 Progress
Service

Learning Goal

Learning Goal
Progress
Service

Learning Goal
Service

Participant
Score

Service

Figure 4.1: Subsystem decomposition of the proposed system

of introducing a new subsystem, it makes sense to integrate the content-
related functionality into the existing lecture subsystem. This subsystem is
connected to the database and is responsible for retrieving, creating, updat-
ing, and deleting lectures and their content. This management and retrieval
functionality is part of the lecture service that the subsystem offers to the
client. The subsystem is also responsible for tracking the content comple-
tion progress. When a student engages with lecture content (e.g., watches a
lecture recording), data about this interaction (e.g., how much of the video
the student has watched) is sent from the client to the server via the lecture
service. The lecture subsystem on the server then uses this interaction data
to calculate a student’s progress in completing lecture content. This progress
information is offered to the new learning goal subsystem via the content com-
pletion progress service. It is important to note that the lecture subsystem

50

4.2. SUBSYSTEM DECOMPOSITION

provides progress information for all lecture content types except exercises.
The high-performance delivery of information about students’ results in ex-
ercises is a relatively complex task that is also important for exercises that
are not connected to lectures (e.g., exam exercises). Therefore the new par-
ticipant score subsystem was created.

We can also identify the need for a learning goal subsystem. This subsys-
tem is connected to the database and is responsible for retrieving, creating,
updating, and deleting learning goals. This management and retrieval func-
tionality is part of the learning goal service that the subsystem offers to the
client. As described in the requirements analysis, the calculation of a stu-
dent’s progress in mastering a learning goal is calculated from the student’s
progress in completing all content linked to the learning goal. A learning goal
is considered completed when the student has completed all linked content.
The learning goal subsystem’s task is to calculate the learning goal progress
and offer it to the client via the learning goal progress service. The progress
information is used in the learning goal section of the learning analytics
dashboard. The learning goal subsystem receives the progress information
for exercises from the participant score subsystem. It receives the progress
information for the other types of content from the lecture subsystem.

As mentioned before, the new participant score subsystem’s task is the
high-performance delivery of information about achieved scores in exercises
to various parts of Artemis, including the learning analytics dashboard in
the client. In the dashboard, this information is used to generate the ex-
ercise performance visualization. We call this subsystem participant score
subsystem as it deals with the scores a participant (a student or a team of
students) has achieved in exercises. The inner workings of this subsystem
are explained in more detail in Chapter 5.

4.2.2 Client Subsystem Decomposition

The learning analytics dashboard view is included in the existing course
overview subsystem. The learning analytics dashboard consists of two sec-
tions. One section deals with learning goals and displays the learning goal
view combined with the learning goal progress visualization for each goal. In
this section, students can see their progress in mastering the learning goals
of the course. Instructors can see the average progress of all students in mas-
tering the learning goals. A second section contains the exercise performance
visualization that students can use to determine how the development of their
own performance in exercises compares to the development of the average and
best performance in the course.

For each lecture content type, a new lecture content view is implemented

51

CHAPTER 4. SYSTEM DESIGN

and added to the client’s existing lecture subsystem. When a student opens
the lecture view, all the embedded lecture content views are also loaded.
The current system’s lecture management view is extended with management
capabilities for the new lecture content types.

Finally, there are new views to display and manage learning goals. These
are included in a new learning goal subsystem in the client. As mentioned
above, we decided to display the learning goals and their progress in the
learning analytics dashboard.

4.3 Persistent Data Management

This section describes the mapping of application domain objects (see Sec-
tion 3.4.3) to the solution domain’s entities. We describe here the entities,
i.e., Java classes, that are being mapped to the relational MySQL database
in the Artemis application server by the object-relational mapping tool Hi-
bernate1. To improve clarity, we have divided the description of the solution
domain model into two figures. Figure 4.2 shows the most important changes
of the proposed system. The new ParticipantScore entity is simplified in the
figure for the sake of clarity. It is explained in detail in Figure 4.3.

We have decided to use the term lecture unit in the solution domain
to refer to the various kinds of content an instructor can add to a lecture.
The abstract class LectureUnit is the superclass of all content types that an
instructor can add to a lecture. The connection of Lecture to LectureUnit is
ordered, meaning an instructor can determine the order in which the lecture
units are presented to students when they open a lecture page. LectureUnit
is an abstract class to increase the supportability of the system. Future
developers can implement new types as subclasses. All lecture units should
have a release date and a name; therefore, these attributes are moved to the
common superclass. We also decided that instructors can give lecture units
points. For calculating a student’s progress in mastering a learning goal, the
progress in completing related lecture units is used. A lecture unit’s points
indicate how much the progress in a particular lecture unit is weighted in the
learning goal progress calculation.

TextUnits represent written notes, VideoUnits represent video record-
ings, AttachmentUnits represent uploaded files, and ExerciseUnits represent
exercises related to a lecture.

1https://hibernate.org/
2Attributes of Student, Course, Lecture, Attachment, Exercise, and ParticipantScore

are fully or partially omitted for the sake of clarity. The model also only considers course
exercises for simplicity and not exam exercises.

52

https://hibernate.org/

4.3. PERSISTENT DATA MANAGEMENT

LectureUnit

name : String
 points: Double
releaseDate: ZonedDateTime

TextUnit

content: String

VideoUnit

description: String

source: String

AttachmentUnit

description: String
ExerciseUnit

Exercise

name : String

releaseDate: ZonedDateTime

maxPoints: Double

Attachment

releaseDate: ZonedDateTime

link: String

Lecture

title: String

* {ordered}

Course
 title: String

Learning Goal

description: String

title: String

*

Student
 userName: String

LectureUnitInteraction

progressInPercent: Double

*

*

0..1

*

0..1

0..1

0..1

*

Using Markdown
Syntax

ParticipantScore

lastScore: Double
**

*

*

Existing Modified New
Legend

*

Figure 4.2: Overview of the changes to the solution domain entities in the pro-
posed system2

For embedding notes in a lecture, we decided to use the existing Mark-
down3 component in the Artemis client. This component offers the possibility
to write text, format it using Markdown syntax, and include images. When
a student opens the page of a lecture with embedded notes, the TextUnit is
loaded from the database and sent to the client. The client then converts the
content into HTML for display.

Instructors can use video units to embed any video (e.g., lecture record-
ings) on the lecture page. They have to upload the video to some video-
sharing platform (e.g., YouTube) that supports embedded video players and
copy the video’s embeddable link into the video unit. This link is stored in

3https://daringfireball.net/projects/markdown/

53

https://daringfireball.net/projects/markdown/

CHAPTER 4. SYSTEM DESIGN

the source attribute of the VideoUnit entity. When loading a lecture with a
video, the client embeds the video directly on the lecture page.

Originally we had the idea to make Attachment and Exercise direct sub-
classes of LectureUnit. However, we rejected this idea, as it would have
required great changes to the underlying database schema. Therefore, we
decided to create the entities ExerciseUnit and AttachmentUnit. With the
help of these new entities, the existing database schema of exercises and at-
tachments can remain unchanged. Instructors select the course exercises they
want to add to a lecture in the client. For those selected, an ExerciseUnit is
created. The name, points, and release date are taken from the underlying
exercise. The release date of an AttachmentUnit is taken from the release
date attribute of the underlying Attachment. The link attribute stores the
link to the uploaded file. Instructors are not required to use the new lecture
format. Therefore, it is still possible to add one or more attachments directly
to a lecture without using an attachment unit. This also saves us from cre-
ating a migration script to convert older lectures in the database to the new
format.

Interactions of a student with a lecture unit are persisted using the new
entity LectureUnitInteraction. This entity stores how far along a student is
in working through a lecture unit.

A new entity is also introduced for Learning Goals. Learning goals are
set by the instructor at the course level and can be linked to several lecture
units. A student’s progress in mastering a learning goal is calculated from
their progress in completing related lecture units. For getting the progress
of text units, video units, and attachment units the LectureUnitInteraction
entity is used. For exercise units, the student’s last achieved score in the
underlying exercise is used. Students should have the ability to improve
in learning goals, so we always consider the result of their last submission,
even if they actually submitted their solution after the official deadline. This
means, for example, that students can progress in learning goals by re-taking
quizzes that they may have already completed. The last achieved score of a
student in an exercise is stored in the new ParticipantScore entity.

Figure 4.3 offers a detailed view of the new ParticipantScore entity and
its purpose. An Exercise in Artemis can either be an individual exercise or
a team exercise. Teams are groups of students that work together on an
exercise. Teams exist on the exercise level (relationship between Team and
Exercise not shown in the figure for simplicity), meaning each exercise in the

4Attributes of Student, Team, Exercise, Course, StudentParticipation, Submission, and
Result are fully or partially omitted for the sake of clarity. We also removed the relationship
between Team and Exercise for clarity. The model also only considers course exercises for
simplicity and not exam exercises.

54

4.3. PERSISTENT DATA MANAGEMENT

Exercise
exerciseMode: ExerciseMode
maxPoints: Double
dueDate: ZonedDateTime

1..*

Course
title: String

StudentParticipation

Submission
submissionDate: ZonedDateTime

Result

rated : boolean

score: Long

ParticipantScore

lastPoints: Double

lastRatedPoints: Double

lastScore: Long

lastRatedScore: Long

Student
userName:String

lastResult

lastRatedResult

Team
teamName: String

Student Score TeamScore

Existing Modified New
Legend

*

0..1

0..1 0..1

*

*

**

*

* *

<<enumeration>>
ExerciseMode

INDIVIDUAL

TEAM

0..1

*

*

0..1

0..1

Figure 4.3: Detailed view on the ParticipantScore entity4

course can have different teams. We use the generic term participant to refer
to either a team of students or a single student. When a participant first
takes part in an exercise, a StudentParticipation is created. For each solution
submitted by the participant, a submission is created and connected to the
participation. Each time the submission is checked for correctness, either
manually by tutors or automatically, a Result is created. The score attribute
represents the percentage of points the participant achieved. For example, a
score of 50 in an exercise that gives 10 points means that the participant has
achieved 5 points. The maximum points and bonus points a participant can
achieve in an exercise are saved in the Exercise entity. For exercises, students
usually have a certain amount of time to submit their solutions. The due
date is stored in the Exercise entity. If a participant submits their solution

55

CHAPTER 4. SYSTEM DESIGN

before the due date of an exercise, the result is marked as rated; otherwise,
it is marked as unrated.

In the exercise performance visualization of the learning analytics dash-
board, Artemis displays for each exercise the points achieved by the logged-in
student, the average points achieved in the course, and the maximum points
achieved in the course. The system only considers rated results for this
visualization as this means all students had the same amount of working
time. Using the entities existing in the current system, Artemis has to tra-
verse several links between entities to find the score a participant achieved
in an exercise. Since such a query affects several tables, there is a significant
performance hit. Therefore we have created the new abstract entity Partic-
ipantScore with the concrete subclasses StudentScore and TeamScore. This
entity is linked to a participant and an exercise. It is also linked to the last
result and last rated result of the participant in the exercise. The system
stores the corresponding score and achieved points in the entity. Queries
involving the achieved score of a participant in an exercise are sped up using
the new entity, as all the necessary information is stored in a single table
in the database. This removes the need to traverse several links between
entities. As a result, the exercise performance visualization can be loaded
very quickly, even for large courses.

Chapter 5 explains in detail how the ParticipantScore entity is created
and updated.

4.4 Access Control

In this section, we present the access control policy of the proposed system.
Artemis has four roles a user can have in a course: Student, Tutor, Instructor,
or Administrator. Whether a user is allowed to perform a certain action
depends on their roles. Table 4.1 shows what roles are allowed to perform
which action in the proposed system. The shorthand for yes is ”y,” and the
shorthand for no is ”n” in the table.

Every user in a course can access the learning goals, but only instructors
and administrators can create, update or delete them. Students can check
their own progress in learning goals. They can also check the average progress
of the rest of the course for comparison. Only instructors and administrators
can view the progress of each student.

The access rights for lecture units are almost identical to those for learning
goals, except that lecture units have a release date, and students can only
access lecture units that have already been released. Tutors, instructors, and
administrators can access all lecture units of a lecture.

56

4.4. ACCESS CONTROL

Participant scores are generated, updated, and deleted completely auto-
matically (see Chapter 5). Therefore, no endpoints are offered for manual
modification. Only instructors and administrators are allowed to query indi-
vidual participant scores for control purposes. Every user of the course can
see the performance visualization in the learning analytics dashboard.

Student Tutor Instructor Admin
Learning Goal
Read y y y y
Create n n y y
Update n n y y
Delete n n y y
Query personal progress y y y y
Query average progress of course y y y y
Query individual progress of all students n n y y
Lecture Unit
Read y (only released) y y y
Create n n y y
Update n n y y
Delete n n y y
Query personal progress y y y y
Query average progress of course y y y y
Query individual progress of all students n n y y
Participant Score
Read n n y y
Create n n n n
Update n n n n
Delete n n n n
Query exercise statistics
(personal, average and best performance)

y y y y

Table 4.1: Access control matrix of the proposed system

57

Chapter 5

Object Design

This chapter focuses on specific implementation details; in particular, we
discuss in Section 5.1 how the ParticipantScore entities are automatically
created, updated, and deleted.

5.1 Participant Scores

As already described in Section 4.3, the ParticipantScore entity (with the
concrete subclasses StudentScore and TeamScore) functions as a shortcut to
quickly determine the achieved score (or points) of a participant (student or
team) in an exercise. To achieve this, the participant score entity is linked to
a participant and an exercise. It is also linked to the last result (rated or not)
and the last rated result of the participant in the exercise. ”Last” means that
this is the most recently created result. A result is rated if the student has
submitted the corresponding solution before the submission deadline. The
achieved score and points are stored directly in the entity.

There are different scenarios where Artemis creates multiple results for a
participant and an exercise. For example, each time a participant submits a
solution to a programming exercise, the code is automatically checked using
corresponding test cases. Depending on the number of test cases passed, a
score is then calculated and saved in a new result. Later, tutors manually
check and evaluate the submissions, whereby a new result is created again.
Although several results exist in the database, in most cases, Artemis is
only interested in the last rated result, as this is the official score achieved
in an exercise. However, for calculating the progress of a student in an
exercise unit, we consider the last result, rated or not, as students should
have the ability to improve in connected learning goals even though the
official deadline has passed. Therefore both the last result and the last rated

58

5.1. PARTICIPANT SCORES

result are of interest.

To keep the participant score table correct, the table must be updated
when creating, updating, and deleting results. For example, if a new result
is created for a student and an exercise, the corresponding participant score
entity must also be updated. We wanted to keep the implementation as
maintenance-free as possible. This means that not every current or future
spot in the codebase that affects results should have to be touched to keep
the table updated. Therefore, we decided to implement a so-called entity
listener.

Entity listeners 1 are a concept specified in the Jakarta Persistence API (
formerly Java Persistence API) 2 and implemented by Hibernate 3. Hibernate
is the object-relational mapping tool used by Artemis.

An entity listener allows the developer to define callback methods for life
cycle events of a particular entity. For updating the participant scores, we
are using an entity listener for the Result entity. Whenever a new result
is created, updated, or deleted, the entity listener’s callback methods are
executed. These callback methods are then creating, updating, or deleting
the corresponding ParticipantScore entities.

Figure 5.1 shows the logic that the entity listener executes after a result
entity is created (post-persist) or updated (post-update) in the application
logic. This would be the case, for example, when a tutor corrects a student’s
submission or an instructor manually changes a student’s score. For sim-
plicity, the figure ignores the distinction between rated and unrated results.
First, the system determines which exercise and participant the result con-
cerns. Then it checks if there is already a participant score for this particular
exercise and participant. If none exists, a new participant score entity is cre-
ated, and the result is set as the last result. If there is already a participant
score, it is checked if the result is equal (update case) to or newer (create
case) than the result currently set as the last one. If neither is the case,
the system can ignore the result; otherwise, the system updates or replaces
the participant score entity’s last result and corresponding score / point at-
tributes. As soon as the callback function is completed, the application logic
continues.

1https://docs.jboss.org/hibernate/stable/entitymanager/reference/en/

html/listeners.html
2https://jakarta.ee/specifications/persistence/
3https://hibernate.org/

59

https://docs.jboss.org/hibernate/stable/entitymanager/reference/en/html/listeners.html
https://docs.jboss.org/hibernate/stable/entitymanager/reference/en/html/listeners.html
https://jakarta.ee/specifications/persistence/
https://hibernate.org/

CHAPTER 5. OBJECT DESIGN

Artemis Application Server
Application Logic

Finish Application
Logic

Create / Update
Result

Correct Student Submission,
Change Score of Student,...

Result

Result Entity Listener

:Result Post-Update / Post-Persist Callback

Create
Participant

Score

[else]

[related participant
score exists]

[else]

Update Last Result
of Participant Score

Determine exercise
and participant

Find participant
score

Replace Last Result
of Participant Score

[result equals
last result]

[result newer than
last result]

Figure 5.1: Result Post-Update / Post-Persist Callback Logic

Figure 5.2 shows the logic that the entity listener executes before a result
entity is deleted (pre-remove) in the application logic. This would be the case,
for example, when an instructor deletes a student’s submission or result. For
simplicity, the figure ignores again the distinction between rated and unrated
results. First, it is checked if there exists a participant score that is connected
to that result. If none exists, the result is deleted, and the business logic
continues. If there is a participant score related to the result, it is checked
if a penultimate result can be used as a replacement. If no replacement
exists, the participant score is deleted. If one exists, the last result of the
participant score is replaced with the penultimate result. In either case, the
result is deleted, and the application logic continues.

60

5.1. PARTICIPANT SCORES

Artemis Application Server
Application Logic

Finish Application
Logic

Initiate Result
Deletion

Delete Result

Delete Submission, Delete Result...

Result Entity Listener

:Result Pre-Deletion Callback

[else]

[related participant
score exists]

Find related
Participant Score

Find Penultimate Result
for Participant and Exercise

[penultimate result
exists]

Set Last Result of
Participant Score

to Penultimate Result

Delete Participant Score

[else]

Result Result

Figure 5.2: Result Pre-Remove Callback Logic

61

Chapter 6

Summary

This chapter summarizes this work and presents the status quo. We discuss
realized and open goals in Section 6.1. We summarize in Section 6.2 the
importance of this work for Artemis. Finally, in Section 6.3, we present
suggestions for further work on learning analytics in Artemis.

6.1 Status

In this section, we compare the requirements we described in Chapter 3 with
the system’s current status. The following notation is used to highlight the
implementation status of the requirements:

 Implemented: The requirement is completely implemented.

G# Partially Implemented: The requirement is only partially imple-
mented, and further work is needed.

Not implemented: The implementation of the requirement has not
been started.

Table 6.1 gives an overview of the implementation status for the func-
tional requirements. Table 6.2 shows the implementation status of the non-
functional requirements.

62

6.1. STATUS

Functional Requirement Status
Lecture Redesign
FR1.1 Provide lecture recordings to students
FR1.2 Provide lecture notes to students
FR1.3 Provide files to students
FR1.4 Provide related exercises to students
FR1.5 Track lecture completion progress of students #
FR1.6 Set release date
Learning Goals
FR2.1 Define learning goals
FR2.2 Progress in learning goals G#
FR2.3 Define learning paths #
Learning Analytics Dashboard
FR3.1 View development of own exercise performance
FR3.2 View course exercise performance development
FR3.3 View own learning goal progress
FR3.4 View course learning goal progress

Table 6.1: Overview of the implementation status of the functional requirements
(fully implemented, G# partially implemented, # not implemented)

Non-functional Requirement Status
Lecture Redesign
NFR1.1 Usability(Efficiency)
NFR1.2 Reliability(Robustness)
NFR1.3 Supportability(Adaptability)
NFR1.4 Supportability(Learnability)
NFR1.5 Performance(Response Time)
Learning Goals
NFR2.1 Usability(Efficiency)
NFR2.2 Usability(Efficiency)
NFR2.3 Usability(Learnability) G#
Learning Analytics Dashboard
NFR3.1 Performance(Response Time)
NFR3.2 Usability(Learnability)

Table 6.2: Overview of the implementation status of the nonfunctional require-
ments (fully implemented, G# partially implemented, # not imple-
mented)

63

CHAPTER 6. SUMMARY

6.1.1 Realized Goals

In total, 10 of the 13 functional requirements are fully implemented.

Instructors can now attach videos (FR 1.1), notes (FR 1.2), files (FR
1.3), and exercises (FR 1.4) to lectures. We also managed to meet the non-
functional requirements: The lecture content is all presented on the lecture
page (NFR 1.1) in a similar design (NFR 1.4) in the instructor’s order. Even
a lecture page with a lot of content loads quickly (NFR 1.5). When cre-
ating lecture notes, the writing progress is saved so that even longer notes
can be written without the risk of data loss (NFR 1.2). New content types
can be simply defined as subclasses of the abstract entity LectureUnit (NFR
1.5) (see Section 4.3). The new lecture format was already used in the winter
semester 2020 / 2021 course ”Patterns in Software Engineering” at the Tech-
nical University of Munich. Due to the worldwide coronavirus pandemic, the
lecture had to take place without face-to-face teaching. All 13 lectures of
the course used the new lecture format to provide students with learning
material (including lecture recordings).

The instructor of the ”Patterns in Software Engineering” course also
defined 5 learning goals (NFR 2.1) and linked them to exercises. Students can
view their learning goal progress (FR 2.2) in the learning analytics dashboard
(FR 3.3). Students and instructors can also view how far the course is on
average in mastering the learning goals (FR 3.4). However, we only partially
succeeded in implementing the learning goal progress feature (FR 2.2), as
currently, only a student’s performance in connected exercises plays a role.
No progress tracking is currently implemented for the remaining types of
lecture content. We were able to meet the usability requirements successfully.
An instructor can easily create a learning goal (NFR 2.1) and link it to lecture
content (NFR 2.2). The content just has to be marked in a table, and it will
be linked to the learning goal. Good learnability (NFR 2.3) could only be
partially achieved. The meaning and calculation logic of the learning goal
progress is not obvious. An explanatory text is shown to the user.

The learning analytics dashboard is implemented successfully (FR 3.1-FR
3.4) in functional and non-functional terms (NFR3.1-NFR 3.2). Thanks to
the new ParticipantScore entity (see Section 4.3 and Chapter 5), the system
is now able to calculate the necessary exercise performance statistics very
efficiently in order to make them available in a visualization on the learning
analytics dashboard.

64

6.2. CONCLUSION

6.1.2 Open Goals

We failed in meeting two functional requirements. The system cannot cur-
rently track a student working through all lecture content types (FR 1.5).
Measuring how much of a text a student has read or how much of a video
he or she has actually watched with attention is not trivial to implement
and was not feasible within the scope of this thesis. Therefore, as described
above, only the linked exercises’ performance is currently used to calculate
the learning goal progress. Due to time constraints, we could also not imple-
ment the linking of learning goals to learning paths (FR2.3). Consequently,
recommended learning paths currently have to be communicated to the stu-
dent indirectly, e.g., by the instructor in the lecture.

6.2 Conclusion

With this work, we have added important learning analytics features to
Artemis, laying the groundwork for further enhancements in this area. Previ-
ously, students lacked the context to judge their performance in the course.
Now they can see in the learning analytics dashboard how they compare
with the rest of the course. The first step towards competency-based learn-
ing was taken with the introduction of learning goals. Students can now
clearly identify which core competencies they should master in the course.
Finally, the concept of a lecture was made more dynamic. Before, a lecture
was just a place in Artemis where the instructor attached the lecture slides.
Now a lecture is the central place in Artemis where all course material is
collected. Since recordings, notes, files, and exercises can now be embedded
on a lecture page, a larger part of the learning process is available for further
learning analytics steps.

6.3 Future Work

In addition to the unrealized goals described above, there are other oppor-
tunities to expand Artemis’ learning analytics capabilities:

Adaptive Learning: Dynamically adapting exercise dif-
ficulty

Adaptive learning means that a student’s interaction with learning content
determines in part the material that is subsequently recommended to him
or her by the system. The goal of this process is to create a personalized

65

CHAPTER 6. SUMMARY

learning experience [Ker16]. In the context of Artemis, a dynamic adapta-
tion of the exercise difficulty level to the student’s abilities would be useful.
Typical for introductory courses in computer science is the sudden increase
in the difficulty of programming exercises. This causes problems, especially
for students without much previous programming experience. If Artemis
adapts the pace of the increase in difficulty to the respective student, i.e.,
recommends easier exercises to weaker students until they are ready for more
difficult exercises, frustration can be prevented. Exercises in Artemis already
have a difficulty attribute, which could be used in the implementation. A
new exercise grouping entity is needed to indicate that the exercises cover
the same topic and differ in difficulty. The student can then either choose
exercises from this group freely or be guided by the recommendation logic. A
simple implementation could be that an easy exercise is randomly presented
to the student until they achieve 80 % of the points. Then the remaining easy
exercises are skipped, and a moderately difficult exercise is recommended at
random. This continues until the student has achieved 80 % in an exercise
of the hardest level.

Manual Learning Path Construction

Due to time constraints, it was not possible to implement the linking of
several learning goals to learning paths within this thesis’s scope. For the
development of learning paths, instructors should be able to define learning
goals as prerequisites for other learning goals. The student can then deter-
mine how to move from their current level of knowledge to a desired level
of knowledge. In addition, other types of links seem useful. For example,
linking learning goals that are conceptually related but do not have a clear
prerequisite relationship. A subdivision of learning goals into smaller subor-
dinate learning goals by means of a parent-child relationship would allow for
finer-grained modeling capabilities. A visualization technique for the client
would be a graph with directed (prerequisite links) and undirected (concep-
tual links) edges. If the user clicks on a learning goal in the graph, the
subordinate learning objectives goals appear.

Automated Learning Path Construction

It would be interesting if Artemis users could create their own learning paths
by indicating which learning goals they have already mastered and which ones
they would like to master. Artemis could then generate an individual learning
path to bridge the gap between initial knowledge and desired knowledge.
This could even be done across courses. For example, imagine the scenario

66

6.3. FUTURE WORK

that someone with no programming experience wants to learn how to build
a website. The system would then generate an individual learning path for
this user, containing material from various courses such as an introduction
to programming course and a web development course. In addition to the
linking of learning goals to learning paths (see above), the implementation
also requires the possibility of defining entire courses as prerequisites for other
courses and the linking of learning goals across courses. When the system
tries to generate a path, either a direct link between learning goals can be
used or, if not available, a link between courses.

Semester Long Projects

Programming courses in Artemis currently contain many relatively small
weekly programming assignments for students to complete. It would help
competency-based learning if Artemis allowed a course to be structured
around a semester-long programming project. Students are given access to a
git repository at the beginning of the course, where they store the project’s
progress. Snapshots of the project are taken at set times and assessed by tu-
tors. An example of such a project would be the development of a compiler.
This course design has many advantages: Students tackle a challenging de-
velopment task where each step builds on the previous one. Along the way,
students grapple with large-scale development problems and integrate knowl-
edge from the entire course.

67

List of Figures

1.1 Mock-up of a visualization that gives students the ability to
use performance and self-orientation 6

1.2 Mock-up of a visualization that gives students the ability to
use mastery-orientation . 7

2.1 The course structure in edX 9
2.2 Example of a unit page in edX 10
2.3 Example of the video component editor in edX 11
2.4 Example of the HTML component editor in edX 11
2.5 Example of the multiple choice problem component editor in

edX . 12
2.6 A course overview page in Khan Academy 14
2.7 A unit overview page in Khan Academy 15
2.8 An explanation of the skill mastery levels in Khan Academy . 16
2.9 Mastery Grids visualization with overall resources shown . . . 17
2.10 Mastery Grids visualization with all resources shown 17

3.1 A lecture page in Artemis version 4.5.2 19
3.2 The course statistics page in Artemis version 4.5.2 20
3.3 Use case diagram of the lecture redesign in the proposed system 27
3.4 Use case diagram of the learning goals in the proposed system 28
3.5 Use case diagram of the learning analytics dashboard in the

proposed system . 29
3.6 Analysis object model of the proposed system 30
3.7 Detailed analysis object model of the new types of lecture

content and their progress measurements in the proposed system 31
3.8 Example of a lecture page in the proposed system 33
3.9 Example of a lecture note in the proposed system 34
3.10 Example of lecture content editing in the proposed system . . 36
3.11 Example of how a video can be added to a lecture in the

proposed system . 37

68

LIST OF FIGURES

3.12 Example of how a file can be added to a lecture in the proposed
system . 38

3.13 Example of how a note can be added to a lecture in the pro-
posed system . 39

3.14 Example of how exercises can be added to a lecture in the
proposed system . 40

3.15 Example of the learning goal section in the learning analytics
dashboard in the proposed system 41

3.16 Example of the modal that opens when a student clicks on a
learning goal in the proposed system 42

3.17 Example of the learning goal management page in the pro-
posed system . 43

3.18 Example of the modal that opens when an instructor clicks on
a learning goal in the proposed system 44

3.19 Example of the learning goal editor in the proposed system . . 45
3.20 Example of the exercise performance chart in the proposed

system . 47

4.1 Subsystem decomposition of the proposed system 50
4.2 Overview of the changes to the solution domain entities in the

proposed system . 53
4.3 Detailed view on the ParticipantScore entity 55

5.1 Result Post-Update / Post-Persist Callback Logic 60
5.2 Result Pre-Remove Callback Logic 61

69

List of Tables

4.1 Access control matrix of the proposed system 57

6.1 Overview of the implementation status of the functional re-
quirements (fully implemented, G# partially implemented,
not implemented) . 63

6.2 Overview of the implementation status of the nonfunctional
requirements (fully implemented, G# partially implemented,
not implemented) . 63

70

Bibliography

[Akp20] Ben Akpan. Mastery learning—benjamin bloom. In Science Ed-
ucation in Theory and Practice, pages 149–162. Springer, 2020.

[BD09] Bernd Bruegge and Allen H Dutoit. Object Oriented Software
Engineering Using UML, Patterns, and Java. Prentice Hall,
2009.

[Blo68] Benjamin S. Bloom. Learning for mastery. instruction and cur-
riculum. regional education laboratory for the carolina and vir-
ginia, topical papers and reprints, number 1. Evaluation com-
ment, 1(2):n2, 1968.

[BT11] J. Biggs and C. Tang. Teaching For Quality Learning At Uni-
versity. SRHE and Open University Press Imprint. McGraw-Hill
Education, 2011.

[CDB15] Linda Corrin and Paula De Barba. How do students interpret
feedback delivered via dashboards? In Proceedings of the fifth
international conference on learning analytics and knowledge,
pages 430–431, 2015.

[CJB05] Hamish Coates, Richard James, and Gabrielle Baldwin. A Crit-
ical Examination Of The Effects Of Learning Management Sys-
tems On University Teaching And Learning. Tertiary Education
and Management, 11(1):19–36, 2005.

[Dor20] Shayan Doroudi. Mastery learning heuristics and their hidden
models. In International Conference on Artificial Intelligence in
Education, pages 86–91. Springer, 2020.

[GKR14] Philip J Guo, Juho Kim, and Rob Rubin. How video production
affects student engagement: An empirical study of mooc videos.
In Proceedings of the first ACM conference on Learning@ scale
conference, pages 41–50, 2014.

71

BIBLIOGRAPHY

[JBR99] Ivar Jacobson, Grady Booch, and James Rumbaugh. The Uni-
fied Software Development Process. Addison-Wesley Longman
Publishing Co., Inc., USA, 1999.

[Kan14] Peter Kandlbinder. Constructive alignment in university teach-
ing. HERDSA News, 36(3):5–6, 2014.

[Ker16] Philip Kerr. Adaptive learning. Elt Journal, 70(1):88–93, 2016.

[KJP16] Jeonghyun Kim, Il-Hyun Jo, and Yeonjeong Park. Effects of
learning analytics dashboard: analyzing the relations among
dashboard utilization, satisfaction, and learning achievement.
Asia Pacific Education Review, 17(1):13–24, 2016.

[KS18] Stephan Krusche and Andreas Seitz. Artemis: An automatic
assessment management system for interactive learning. In Pro-
ceedings of the 49th ACM Technical Symposium on Computer
Science Education, SIGCSE ’18, page 284–289, New York, NY,
USA, 2018. Association for Computing Machinery.

[KSBB17] Stephan Krusche, Andreas Seitz, Jürgen Börstler, and Bernd
Bruegge. Interactive learning: Increasing student participation
through shorter exercise cycles. In Proceedings of the Nine-
teenth Australasian Computing Education Conference, pages 17–
26, 2017.

[KTKK12] Carola Kruse, Thanh-Thu Phan Tan, Arne Koesling, and Marc
Krüger. Strategies of lms implementation at german universi-
ties. In Virtual Learning Environments: Concepts, Methodolo-
gies, Tools and Applications, pages 522–541. IGI Global, 2012.

[KvFA17] Stephan Krusche, Nadine von Frankenberg, and Sami Afifi. Ex-
periences of a software engineering course based on interactive
learning. In SEUH, pages 32–40, 2017.

[LGHB14] Tomasz D Loboda, Julio Guerra, Roya Hosseini, and Peter
Brusilovsky. Mastery grids: An open source social educational
progress visualization. In European conference on technology en-
hanced learning, pages 235–248. Springer, 2014.

[May05] Richard E Mayer. Cognitive theory of multimedia learning. The
Cambridge handbook of multimedia learning, 41:31–48, 2005.

72

BIBLIOGRAPHY

[Pin00] Paul R. Pintrich. Multiple Goals, Multiple Pathways: The Role
of Goal Orientation in Learning and Achievement. Journal of
Educational Psychology, 92(3):544–555, 2000.

[Sie13] George Siemens. Learning analytics: The emergence of a disci-
pline. American Behavioral Scientist, 57(10):1380–1400, 2013.

[SRTV+16] Beat A. Schwendimann, Maria Jesus Rodriguez-Triana, Andrii
Vozniuk, Luis P. Prieto, Mina Shirvani Boroujeni, Adrian Holzer,
Denis Gillet, and Pierre Dillenbourg. Perceiving Learning at
a Glance: A Systematic Literature Review of Learning Dash-
board Research. IEEE Transactions on Learning Technologies,
10(1):30–41, 2016.

[TYKJ16] Jennifer Pei-Ling Tan, Simon Yang, Elizabeth Koh, and Christin
Jonathan. Fostering 21st century literacies through a collabora-
tive critical reading and learning analytics environment: user-
perceived benefits and problematics. In Proceedings of the
sixth international conference on learning analytics & knowledge,
pages 430–434, 2016.

[Wis14] Alyssa Friend Wise. Designing pedagogical interventions to sup-
port student use of learning analytics. In Proceedings of the
fourth international conference on learning analytics and knowl-
edge, pages 203–211, 2014.

73

	Introduction
	Problem
	Motivation
	Objectives
	Outline

	Related Work
	edX
	Khan Academy
	Mastery Grids

	Requirements Analysis
	Overview
	Current System
	Proposed System
	Functional Requirements
	Non-functional Requirements

	System Models
	Scenarios
	Use Case Model
	Analysis Object Model
	User Interface

	System Design
	Design Goals
	Subsystem Decomposition
	Server Subsystem Decomposition
	Client Subsystem Decomposition

	Persistent Data Management
	Access Control

	Object Design
	Participant Scores

	Summary
	Status
	Realized Goals
	Open Goals

	Conclusion
	Future Work

