
CSEPM - A Continuous Software Engineering
Process Metamodel

Stephan Krusche
Technische Universität München

Munich, Germany
krusche@in.tum.de

Bernd Bruegge
Technische Universität München

Munich, Germany
bruegge@in.tum.de

Abstract—Software engineers have to cope with uncertainties
and changing requirements. Agile methods provide flexibility
towards changes and the emergence of continuous delivery has
made regular feedback loops possible. The abilities to maintain
high code quality through reviews, to regularly release software,
and to collect and prioritize user feedback, are necessary for
continuous software engineering (CSE). However, there exists
no software process metamodel that handles the continuous
character of software engineering.

In this paper, we describe an empirical process metamodel
for continuous software engineering called CSEPM, which treats
development activities as parallel running workflows and allows
tailoring and customization. CSEPM includes static aspects that
describe the relations between specific CSE concepts including
reviews, releases, and feedback. It also describes the dynamic
aspect of CSE, how development workflows are activated through
change events. We show how CSEPM allows to instantiate linear,
iterative, agile and continuous process models and how it enables
tailoring and customization.

Keywords-Process Model, Agile Methods, Feedback, Release,
Review, Change, Event, Workflow

I. INTRODUCTION

The term “software engineering” (SE) was first proposed in
the 1960s [1]. It “was deliberately chosen as being provocative,
in implying the need for software manufacture to be [based] on
the types of theoretical foundations and practical disciplines[,]
that are traditional in the established branches of engineering”
[2]. The vision was to move from unstructured ways to a de-
fined software life cycle model to understand and characterize
how software is developed. By adapting successful methods
of other engineering domains, the goal was to industrialize
the creation of software with a defined process that is well
understood, predictable, repeatable and efficient [3].

Detailed process models emerged with a strong emphasis on
planning and the goal to describe the process of engineering
software, e.g. Royce’s linear waterfall process model [4]. He
transfered the sequential order of activities in production lines
to form a linear development approach. This resulted in a
defined software process following strict rules and avoiding
deviations, which were seen as errors that need to be corrected.

In the following years, software developers increasingly
recognized that the essence of SE is to deal with changes
and that defined process models are not capable of addressing
this need. SE consists of experimental knowledge work where

creativity is important [5]. Such work includes unexpected
events, incidents and uncertainty. Lehman realized in the 1980s
that software evolution, the continual change to a software
system, is inevitably required to keep software up to date with
changing environments and to satisfy stakeholders [6].

In the 1990’s, agile methods such as Scrum [7] emerged
with the philosophy that SE should not follow a defined
process model but rather an empirical model that is not
entirely planned. The principles in the agile manifesto include
customer satisfaction through early and continuous delivery
and the welcome of changing requirements, even late in the
project [8]. Based on continuous integration, Jez Humble
defined a model for continuous delivery in 2010 [9]: the goal
is to keep software in a state so that changes to it can be
released at any time. Regular releases lead to an improved
product quality and high customer satisfaction [10].

However, Humble’s model does not describe how to contin-
uously handle changes and user feedback. In fact, Rodríguez
and her colleagues identified “a clear research gap [...] for
mechanisms to use customer feedback in the most appropriate
way so that information can be quickly interpreted” in their
systematic mapping study in 2016 [11]. Jan Bosch introduced
the term continuous software engineering (CSE) [12]. How-
ever, to our best knowledge, there has not yet been an attempt
to model SE continuously. This is the focus of this paper.

The objective is to create a software process metamodel that
describes the continuous and unexpected nature of SE through
the idea of workflows that can be interrupted by change events.
The process metamodel improves the understanding of CSE
because it generalizes the essential concepts and activities in
a standard and simplifies the communication. It allows the in-
stantiation of multiple process models and facilitates tailoring
and customization. This is important because processes have
to be adapted to concrete project environments.

The paper is organized as follows. Section 2 describes soft-
ware process models as the foundation of this work. In Section
3, we introduce CSEPM including its static and dynamic
aspects. Section 4 shows how CSEPM can be instantiated with
linear, iterative and agile process models. In Section 5, we
describe Rugby [13] as one exemplary instance of a continuous
process model. Section 6 relates CSEPM to existing process
metamodels and Section 7 concludes the paper.

To appear at RCoSE 2017

II. SOFTWARE PROCESS MODELS

The term process is used in various contexts and can be
defined as “a related set of activities conducted to the specific
purpose of product definition” [14]. A process model describes
how activities must, should or could be performed in contrast
to the process itself which is what really happens. A process
is an instantiation of a process model and includes workflows
describing work practices in the project. A workflow is a
thread of cohesive and mostly sequential activities performed
by project participants that produce artifacts [15]. Designing
a process model is related to process meta modeling [14].

Process control deals with mechanisms for maintaining the
output of a process in a specified and desired range. Control
does not mean the process can be completely predicted. One
goal of process control is the minimization of risks. If potential
problems can be detected early, a reaction can be defined
to solve the problem. There are different styles of process
models distinguished by their process control, e.g. defined vs.
empirical process control. A defined process is a collection of
tightly coupled steps: the output of one step is the input to
the next step [16]. The defined model handles changes and
failures as deviations that need to be corrected and tries to
prevent the occurrence of changes in the plan or outcome of
the process. This type of process control is used in assembly
productions as described by Taylor in the 1920s [17] for the
manufacturing of industry products such as cars.

However, it cannot be used for building complex systems
which require creative problem solving and adaptivity to
change [15]. Software development is a complex process
with random variables, that cannot be defined completely
deterministic. “It is typical to adopt the defined (theoretical)
modeling approach when the underlying mechanisms by which
a process operates are reasonably well understood. When
the process is too complicated for the defined approach, the
empirical approach is the appropriate choice” [18]. Complex
processes require therefore an empirical control model.

Empirical process control includes visibility, inspection and
adaption. It allows to control complex processes, which cannot
perfectly be defined and which would generate unrepeat-
able and unpredictable results. The empirical model handles
changes and failures as opportunities. A quick reaction to
changes can lead to advantages compared to competitors.
Empirical process control allows to expect the unexpected.
If something unexpected occurs, the process is inspected and
potentially adapted.

There are three ways to adapt a process model: tailoring,
customization and extension. Process tailoring is the adap-
tion to operational needs on a more general level through
the removal, modification or addition of workflows, without
significantly deviating from the process model. According to
Ginsberg, tailoring is the act of adjusting the definition of a
general process description - the process model - to derive an
alternative environment - the process [19].

Process customization is the adaption to operational needs
on a more specific level through the removal, modification

or addition of activities in an existing workflow, without sig-
nificantly deviating from the workflow model of the process.
Process extension is the adaption to operational needs through
the addition of a new workflow or activity that cannot be
described with existing elements of the process model.

III. CONTINUOUS SOFTWARE ENGINEERING PROCESS
METAMODEL (CSEPM)

In this section, we introduce CSEPM, an empirical software
process metamodel. Figure 1 shows CSEPM integrated into
the meta object facility (MOF) with four layers and examples.
The topmost layer M3 consists of the meta metamodel with
the most abstract concept of a class.

MOF Layer Type Example
M3 - Meta

Metamodel
Meta Object

Facility

M2 - Metamodel
(Generic concepts)

CSEPM

M1 - Model
(Way of working)

Process
Model

M0 - Reality
(What actually

happens)

Concrete
Process

Class

<<stereotype>>
Work Queue

<<instanceOf>>

<<Work Queue>>
Sprint Backlog

<<instanceOf>>

<<instanceOf>>

<<stereotype>>
Work Item

<<Work Item>>
Backlog Item

<<instanceOf>>

<<instanceOf>>

*

*

<<instanceOf>>

Sprint 1 Backlog
ID Name Difficulty
1 Search available Pedelecs Medium
2 Check working radius Large

<<instanceOf>>

Fig. 1. CSEPM in the meta object facility layers

CSEPM resides in layer M2. An example of a generic
concept on M2 is the Work Queue, an abstract representation
of an ordered list of Work Items with a priority. On layer M1,
there can be different process models that describe the way
of working in a software development project. An example
of a concrete concept on layer M1 is the Sprint Backlog in
Scrum which is an instantiation of the Work Queue on layer
M2. The sprint backlog consists of Backlog Items, which are
instantiations of Work Items. Instantiations are represented
using the stereotype notation, e.g. «Work Queue», which is
similar to an inheritance relationship.

Concrete processes used in projects are instances of process
models and reside on the M0 layer, that describes what actually
happens in the reality. An example would be the real Sprint
1 Backlog of a project written on a board or stored in a tool.
The example in Figure 1 includes two concrete backlog items
“Search available Pedelecs” and “Check working radius” with
specific values for attributes such as ID and difficulty.

A. Static Model

Figure 2 shows the static core model of CSEPM1. The
workflow model includes the Work Queue, a prioritized list
of Work Items, that can be larger activities or small tasks,
modeled with the composite pattern. New elements are sorted
into the queue after their priority and urgency. If priority or

1For readability reasons, some model elements (e.g. roles) and unimportant
attributes and methods are excluded.

To appear at RCoSE 2017

urgency of a work item change, the element can be moved
in the queue. There might be cases where a team member
decides to start with a different work item than the first one in
the queue, e.g. due to dependencies or due to capacity reasons.
Work items can depend on each other and can have different
states, such as ready, running or finished.

Workflow Model

Change Model

- load
-state : State
+customize()
+activate()
+sleep()
+receive(Event)

Workf low

+modifyItem()
+proritizeItem()

Work Queue

Configuration Management Model

-state : State
-priority : Int
+interrupt()
+resume()

Work Item

Art i fact
(Resource)

Sleep
Ready
Running
Blocked
Finished

< < e n u m > >
State

Act iv i ty

Project Management Model

+tailor()
Process

Project

Outcome

Control led
I tem

+send()
Event

+addObserver()
+removeObserver()
+notify()

Event Subject

+update()
Event Observer

Service
(Tool)

Feedback Task

Version

Milestone

Phase

Review

Release

Iterat ion

*

*

*

*

*

1

*

*

0..*

1..

*

*

*

depend on

require

create

activate

subscribe
/ create

Visual Paradigm Standard(TUM - Institut fuer Informatik - Lehrstuhl 1)

Fig. 2. CSEPM’s core concepts and relationships as UML class diagram

The change model includes the workflow as an Event
Observer, which can subscribe to certain Events and also
create events that trigger the activation of other workflows. A
workflow belongs to the Process of the Project. The process
consists of multiple Phases. There are process models, in
which certain workflows are only activated in specific phases.
Each phase can have Milestones, e.g. an important meeting
where the continuation of the project is decided or where an
Outcome of the project is discussed, e.g. the documentation
of the requirements analysis phase.

Controlled Items are outcomes of work items created by
using Services (Tools) and have a Version. The same document
might exist in multiple versions after it was changed due to
feedback. Certain outcomes (e.g. builds) are combined into
a Release, which is a specific version. An outcome can be
subject of a Review that leads to Feedback on the outcome.

B. Change Model

CSEPM includes different Event types. An event is the
generic form of a change, can trigger interruptions of the
current workflow and can lead to the activation an another
workflow. This is modeled with the observer pattern. Figure 3
shows a simplified version of the event taxonomy with some

exemplary events. The event model is extensible: events can
be added, changed and removed through process tailoring,
workflow customization or the use in different application
domains. New events can even be added during a project.

Communicat ion
Mechanism

Request

Scheduled
Event

Unscheduled
Event

Meeting

Asynchronous
Mechanism

Synchronous
Mechanism

Time based
Release

Event

Event based
Release

Feedback
Report

Design
Report

Feature
Report

Bug
ReportMilestone

Release
Request

Change
Request

Merge
Request

Project
Start

Project
End

Kickof f
Meeting

Sprint
Review

Improvement
Request

deal with

Visual Paradigm Standard(TUM - Institut fuer Informatik - Lehrstuhl 1)

Fig. 3. CSEPM’s change model including an event taxonomy for exemplary
scheduled and unscheduled events. The model is extensible with new events.

The change model distinguishes between scheduled events
(e.g. Meetings) and unscheduled events (e.g. a Bug Report
or Change Request) and provides a unified model for both.
An event only notifies a workflow if it is interested, i.e. if it
subscribed to the event. Workflows create events and notify
other workflows when they are active. For instance, a bug
report is interesting for the implementation workflow, while
a feature request is interesting for the analysis workflow. An
important distinction in CSEPM is made between time based
and event based releases. Time based releases are scheduled,
e.g. at the end of a Sprint in Scrum. Event based releases
are unscheduled, e.g. if developers need feedback, customers
request a new release or if a new feature is finished and should
be delivered immediately.

C. Dynamic Model
The core of CSEPM’s dynamic model is the workflow

model. Figure 4 shows the dynamic view of CSEPM describ-
ing the control flow of workflows. In CSEPM, all workflows
are started in the beginning of the project with the Workflow
Start event and run continuously (potentially inactive) until
the project end. After the project start, workflows subscribe to
events they are interested in and then immediately sleep until
an Incoming Event occurs which they have subscribed to. In
the most extreme case, when the events, a certain workflow
has subscribed to, never occur, then this workflow is never
activated and sleeps until the project end.

If a subscribed event occurs, the workflow is activated
and performs the work until the work is finished. Then, the
workflow notifies other workflows about the finished work
by sending an Outgoing Event. A specific event, which each
workflow subscribes to, is the Workflow Customization. It is
created, when the team wants to customize a workflow. Before
the customization, the workflow is stopped, then customized
and started again. The workflow might now subscribe to
different events. At the project end, all workflows are stopped.

To appear at RCoSE 2017

Start
Workflow

Perform
Work

Incoming
Event

Activate
Workflow

Workflow

Outgoing
Event

Stop
WorkflowProject End

Workflow
Customization

Stop
Workflow

Customize
Workflow

Workflow
Start

Workflow Start

Workflow
Start

Subscribe
to Events

Project End

SleepWork
finished?

Sleep

Project
Start

Sleep

No
Yes

Visual Paradigm Standard(TUM - Institut fuer Informatik - Lehrstuhl 1)

Fig. 4. CSEPM’s core workflow model as UML activity diagram

Figure 5 shows the lifecycle model of a workflow. After
the workflow has been started and has subscribed to events, it
transitions to the Sleep state. Incoming events (orange) trigger
the transition to the Active state. Workflows can be interrupted
so that they are in the state Blocked. This happens e.g. if
important information is missing that is necessary to perform
the work, or if other more important work has to be done.
If the problem is solved, e.g. the information is available, the
workflow can resume and transition to the active state again. If
the work is performed, the workflow omits an outgoing event
(blue) and transitions to the sleep state again. The workflow
transitions to the Finished state, when it is stopped, e.g. for
customizations, or when the project ends.

Active

Finished

Blocked

Incoming
Event

Outgoing
Event

End

Sleep

Start
activate

stop
resume

interrupt

sleep

Visual Paradigm Standard(TUM - Institut fuer Informatik - Lehrstuhl 1)

Fig. 5. The lifecycle model of a CSEPM workflow as UML state diagram

IV. CSEPM INSTANCES

We show 3 instantiations of CSEPM, which reside on layer
M1 in Figure 1, a linear, iterative and agile process model.

A. Linear Process Model

The first example of an instance of CSEPM is the linear
waterfall model by Royce [4] which uses a defined process
model control. The model has a one to one mapping between
phases and workflows, e.g. the requirements elicitations phase
corresponds to the requirements elicitations workflow. All
phases produce an outcome and depend on a milestone of
the previous phase that represents the end of the phase, e.g.
the implementation phase can only start if the design phase
is finished and the design document was completely realized.
There is only one release produced after the testing phase that
is further adapted in the maintenance phase.

Figure 6 shows how to model workflows in the waterfall
model dynamically2. Requirements Elicitation starts directly

2This is a simplified view that leaves out the transitions to previous phases
that are also described in the initial publication by Royce [4]. A defined
process can have a change control process as e.g. defined in [20].

after the Project Start event and lasts until the Problem
Statement is realized which triggers the event Requirements
Elicitation finished that activates the Analysis phase. Each
workflow in the Waterfall model subscribes to only one event,
which is triggered by the end of the previous phase, and
ignores all other events. After activation, a workflow runs
solely until its outcome was produced. Then the workflow
sleeps and the next one starts.

Requirements
Elicitation

Problem
Statement

Elicit
requirements

Analysis

Requirements
Analysis

Document

Analyze

...

...

...

Deployment

Deployed
Software

Deploy

Requirements
Elicitation
finished

Requirements
Elicitation
finished

Analysis
finished

...

...

Testing
finished

Project
Start

Software
deployed

Project
End

Project
Start

Project
End

Sleep

Sleep

Sleep
Sleep

Visual Paradigm Standard(TUM - Institut fuer Informatik - Lehrstuhl 1)

Fig. 6. Dynamic view of the Waterfall process model as UML activity
diagram: example of a linear instantiation of CSEPM (adapted from [4])

B. Iterative Process Model

The second example is the iterative Unified Process by
Jacobson et al. [21]. The dynamic view of the process model
is shown in Figure 7.

Inception

Candidate
Architecture

Iterate

Elaboration

Iterate

Executable
Architecture

Construction

Iterate

Intermediate
Release

Transition

Iterate

Final Release

Lifecycle
Objective

Lifecycle
Architecture

Lifecycle
Objective

Lifecycle
Architecture

Initial
Operational
Capability

Initial
Operational
Capability

Product
Release

Project
End

Project Start

Project
Start

Iteration
needed?

Iteration
needed?

Iteration
needed?

Iteration
needed?

Project
End

No

Yes

No

Yes

Yes

Yes

No

No

Visual Paradigm Standard(TUM - Institut fuer Informatik - Lehrstuhl 1)

Fig. 7. Dynamic view of the Unified Process model as UML activity diagram:
example of an iterative instantiation of CSEPM (adapted from [21])

It includes the four phases inception, elaboration, construc-
tion and transition. The Inception phase creates the Candidate
Architecture as outcome and upon the Lifecycle Objective
milestone, the Elaboration phase is activated that creates an
Executable Architecture Baseline and lasts until the Lifecycle
Architecture milestone. The Construction phase creates multi-
ple Intermediate Releases, which are increments that include
a specific functionality and build upon the last intermediate

To appear at RCoSE 2017

release. This is usually the longest phase in the Unified
Process. It finishes when the Initial Operation Capability
milestone is reached. Then the Transition starts with the goal
to deploy the release in the target environment and lasts until
the Final Release is produced.

Milestones are modeled as events, which transition between
two phases. Phases can be split into multiple iterations. The
inception, elaboration and transition phases run until their
respective outcome is finalized. In the construction phase,
each iteration creates an intermediate release as outcome.
At the beginning of the project, six core workflows and
three supporting workflows are activated. Each phase has a
specific emphasis on certain workflows, e.g. the inception
phase focuses on business modeling and requirements.

C. Agile Process Model

The third example is the agile Scrum process by Schwaber
and Beedle [16]. Development is completed in sprints (mod-
eled as instance of phase) that produce Product Increments
as outcomes, which are reviewed during the Sprint Review
Meeting. Each product increment builds upon the previous
one and incrementally adds new features. The dynamic view
of the process model is shown in Figure 8. After the project
starts, the kickoff meeting is conducted, in which the product
backlog is created. After the product backlog is finished, the
event Product Backlog created leads to the start of the first
sprint. Sprints are conducted until the project is finished.

Sprint N

Kickoff
Meeting

Create
Product
Backlog

Initial
Product
Backlog

Revise
Product
Backlog

Sprint Planning
Meeting

Create
Sprint

Backlog
Sprint

Backlog N

Develop
Backlog Item

Build
Product

Increment
Product

Increment N

Sprint Review
Meeting

Feedback

Revised
Product
Backlog

Time based
Release

Feedback
Report

Project
End

Product
Backlog
revised

Product
Backlog
created

Product
Backlog
created

Feedback
Report

Time
based

Release

Project finished?

Development
done?

Project
Start

Project
End

No
Yes

Yes
No

Visual Paradigm Standard(TUM - Institut fuer Informatik - Lehrstuhl 1)

Fig. 8. Dynamic view of the Scrum process model as UML activity diagram:
example of an agile instantiation of CSEPM (adapted from [16])

A sprint starts with a Sprint Planning Meeting, in which
the sprint backlog is created as base for the development.
The team meets daily while developing the backlog items. It
builds the product increment, a time based release, before the
sprint review meeting, which marks the sprint end. During
this meeting, the time based release is presented and can
lead to feedback which triggers the event Feedback Report.
A feedback report can lead to a revised product backlog, that
is used for the next sprint.

V. RUGBY AS CSEPM INSTANCE

Based on Takeuchi and Nonaka [22], we use the term Rugby
for a process model that uses agile concepts of Scrum [16] and
the idea of iterative workflows of the Unified Process [21] to
create a CSE process model. We first described Rugby in [13]
and subsequently tailored it for industry projects [23]. Rugby’s
process model is described in detail in [24]. Rugby includes
additional workflows for reviews [25], releases [13] and user
feedback [26]. In this section, we show Rugby as an example
of a continuous process model as instantiation of CSEPM.

A dynamic view of Rugby’s process model is shown in
Figure 9. Rugby defines the Sprint 0 as an upfront project
phase which customizes its three additional workflows for
reviews, releases and feedback. Another goal in Sprint 0 (not
shown in detail in Figure 9) is the creation of a shared
understanding of the project requirements in the initial product
backlog and of the software architecture. Typical deliveries
in this phase, which takes 2 - 4 weeks depending on the
experience of the team, are an empty review, an empty release,
and an empty feedback to ensure the workflows are set up
properly and everyone in the team is able to apply them.

Sprint 0

Kickoff
Meeting

Create
Empty

Release Create
Product
Backlog

Product
BacklogRelease 0

Sprint N

Revise
Product
Backlog

Sprint Planning
Meeting

Create
Top Level

Design

Top Level
Design

Create
Sprint

Backlog
Sprint

Backlog N

Develop
Backlog Item

Build Time
based Release

Release N
(Product

Increment)

Sprint Review
Meeting

Feedback

Revised
Product
Backlog

Build Event
based Release

Event
based

Release

Use
ReleaseFeedback

Release
Request

Tailor
Release

Workflow

Empty
Feedback

Tailor
Feedback
Workflow

Create
Empty

Feedback

Tailor
Feedback
Workflow

Empty
Review

Create
Empty
Review

Time based
Release

Time based
Release

Feedback
Report

Project
End

Feedback
Report

Sprint 0
finished

Sprint 0
finished

Product
Backlog
revised

Kickoff
Meeting Sprint 0 Sprint 0

finished

Need
Feedback?

Development
done?

Project Start

Project
End

Project finished?

Project Start

No

Yes

YesNo

No
Yes

Visual Paradigm Standard(TUM - Institut fuer Informatik - Lehrstuhl 1)

Fig. 9. Dynamic view of the Rugby process model as UML activity diagram:
example of a continuous instantiation of CSEPM (adapted from [13])

After Sprint 0, the team works in development sprints as
defined in Scrum and has to build a product increment before
the sprint review meeting. Development sprints in Rugby have
the same goal as in Scrum. The difference to Scrum is that
in Rugby, the team can build event based releases and obtain
feedback during the development sprint. In addition, Rugby
uses a review workflow with merge requests as described in
[25] and shown in Figure 10 in the details of the Develop
Backlog Item activity.

Figure 11 shows the synchronization of parallel workflows
in Rugby through change events. New Backlog Items are iden-
tified through change requests or feedback reports and need
to be prioritized and specified to be ready for development.

To appear at RCoSE 2017

Develop Backlog Item

Analyze Design Implement Test

Feedback

Sprint
Backlog N

Pull Backlog Item
from Sprint Backlog

Create
Release

......

Check in Changes
to Branch

Create Branch
for Backlog Item

Merge
Branch

Review
changes

Request
Merge

Update Backlog
Item Status

Merge
Request

Request
Improvements

Event
based

Release

Use
Release

Changes

Improvements

Development done?

Need
Feedback?

Backlog Item
realized?

Quality
ok?

Yes

Yes
No

No

No

No

Yes
Yes

Visual Paradigm Standard(TUM - Institut fuer Informatik - Lehrstuhl 1)

Fig. 10. Details of the activity Develop Backlog Item in Rugby

This inserts them into the work queue. A developer can assign
the backlog item to himself which activates the development
workflow. The developer analyzes, designs, implements, and
tests in parallel to produce source code changes. If the backlog
item is realized, i.e. it fulfills all acceptance criteria, the
developer requests a merge. This activates the review workflow
where the reviewer either accepts the changes (if the quality
of the changes meets the defined criteria) so that they can be
merged, or where the reviewer requests improvements (e.g. if
merge conflicts occur), so that development is activated again.

Another possibility is that the developer requests a release
of the unfinished backlog item if he needs feedback or has a
question. Then, the release workflow is triggered and creates
an Event based release that can be used in the usage workflow.
If the user has feedback, he creates a Feedback Report, which
is analyzed in the feedback workflow and leads to a Change
to an existing functionality or to a New Backlog Item.

The shown workflow synchronization in Figure 11 is an
example of how workflows can be defined in a concrete
process model. CSEPM also allows to tailor the process, e.g.
by adding a new workflow for test driven development. It also
enables workflow customization, e.g. by changing the review
workflow to review every commit, or by changing the release
workflow to continuous deployment.

Rugby is in use in multiple university courses including cap-
stone courses [27] and interactive lecture-based courses [28]. It
is also tailored in industry projects at a large German company
Capgemini [23].

VI. RELATED WORK

Steenweg and her colleagues found four systematic ap-
proaches for software process metamodels in their literature

Release Workflow

Usage Workflow

Development Workf low

Event based
Release Use Release

Feedback Workflow

Feedback
Report

Analyze
Feedback

Report

Implement

Test

Release
Request Create Release Release Event based

Release

Create
Feedback

Report
Feedback

Report
Feedback

Report

Backlog
Item

Add to
Sprint

Backlog
New

Backlog ItemChange
Request

Analyze
Change
Request Convert to

Backlog Item

Requirements Elicitation Workflow

New Backlog
Item

Prioritize Backlog Item
ready for

DevelopmentSpecify Acceptance
Criteria

Analyze

Design Check in
Changes to

Branch

Request
Merge

Merge
Request

Changes

Merge
Request

Improvement
Request

Review Workflow

Request
Improvements

Update Backlog
Item Status

Accept
Merge

Merge Request Review
Changes

Merge
Changes

Improvements Improvement
Request

Change to
existing

functionality

Release
Request

Change to
existing

functionality

Backlog Item
finished

Add to
Product
Backlog

Backlog Item
ready for

Development

Integrate
Feedback
directly?

Sleep

Sleep

Backlog
Item

realized?

Is relevant?

Sleep

Quality ok?

SleepHas Feedback?

Need Feedback?

Sleep

Is new
requirement?

Sleep

Sleep

Sleep

No
Yes

Yes

No

No

Yes
No

Yes

No
Yes

No
Yes

Yes

Visual Paradigm Standard(TUM - Institut fuer Informatik - Lehrstuhl 1)

Fig. 11. Dynamic view of the synchronization of Rugby’s parallel workflows
through change events

review [29]: (1) V-Model XT metamodel, (2) Software Process
Engineering Metamodel (SPEM), (3) Software Engineering
Metamodel for Development Methodologies (SEMDM) and
(4) MetaME. In addition, (5) the Business Process Definition
Metamodel (BPDM) is used to define business process models.
In this section, we relate CSEPM to these five metamodels.

The V-Model XT metamodel [30] is based on the ideas of
software process lines and modularity. Process variants can
tailor, customize and extend the reference model which is
similar to CSEPM’s capability of tailoring, customization and
extension. The V-Model XT metamodel focuses on artifact-
oriented software processes and includes change procedures.
It does not describe workflows and its lifecycles.

SPEM was released in 2002 by the Object Management
Group (OMG) [31]. It is used to define and describe SE
processes and their components. As CSEPM, SPEM includes
a list of fundamental elements which are sufficient to describe
different types of software process models. In contrast to
CSEPM, it does not include specific features for project
management. The goal of SPEM is to accommodate a large
range of development methods and processes of different
styles, cultural backgrounds, levels of formalism, lifecycle
models, and communities. While SPEM includes milestones
as important events, it does not include a workflow model, a
change model or an event taxonomy.

To appear at RCoSE 2017

SEMDM is an ISO standard based on UML [32] that
addresses software process design. It is influenced by the idea
of situational method engineering (SME) [33], the construction
of methods which are adapted to specific situations of develop-
ment projects. CSEPM’s change model and its customization
possibilities also allow to adapt to specific situations and
provide more flexibility towards changes and feedback.

MetaME allows to create software engineering methods
by combining product and process models [34]. It is based
on SME and provides a proposal of how to create software
engineering methods. As CSEPM, it includes a workflow
model and describes different types of dependencies, but does
not include change events or how to handle changes.

BPDM has been specified in 2008 by the OMG [35] as stan-
dard definition of concepts used to express business process
models. The metamodel defines concepts, relationships, and
semantics for the exchange of user models between different
modeling tools. It includes interactions between independent
business processes called choreographies which can be spec-
ified independently of its participants. As CSEPM, BPDM
defines an event taxonomy and distinguishes between start
and end events. It defines success events, failure events, abort
events and error events. Similar to CSEPM, BPDM allows
modelers to extend the event taxonomy with newly defined
events. BDPM events are similar to CSEPM’s change model
where events trigger the activation of workflows. However,
BDPM does not include SE related workflows.

VII. CONCLUSION

In this paper, we described CSEPM, an empirical pro-
cess metamodel for continuous software engineering. CSEPM
treats development activities as parallel running workflows. It
includes static models that describe the relations between spe-
cific CSE concepts including reviews, releases, and feedback.
With its workflow model, CSEPM focuses on dynamic aspects:
how development workflows are activated and interrupted
through change events. It consists of an extensible change
model and treats changes as events that activate workflows.

While CSEPM also allows to instantiate linear and iterative
process models, it was designed for agile and continuous pro-
cess models and allows tailoring, customization and extension.
It helps to understand the continuous and unexpected nature
of software engineering. In the future, we want to provide a
reference implementation and tool support.

REFERENCES

[1] M. Mahoney, “The roots of software engineering,” CWI Quarterly,
vol. 3, no. 4, pp. 325–334, 1990.

[2] P. Naur, B. Randell, and J. Buxton, Software engineering: concepts and
techniques: proceedings of the NATO conferences. Petrocelli, 1976.

[3] M. Fowler, “The new methodology,” Wuhan University Journal of
Natural Sciences, vol. 6, no. 1-2, pp. 12–24, 2001.

[4] W. Royce, “Managing the development of large software systems,” in
Proceedings of IEEE WESCON, 1970.

[5] V. Basili, “The role of experimentation in software engineering: past,
current, and future,” in Proceedings of the 18th international conference
on Software engineering. IEEE, 1996, pp. 442–449.

[6] M. Lehman and L. Belady, Program evolution: processes of software
change. Academic Press, 1985.

[7] K. Schwaber, “Scrum development process,” in Proceedings of the
OOPSLA Workshop on Business Object Design and Information, 1995.

[8] K. Beck, M. Beedle, A. Van Bennekum, A. Cockburn, W. Cunningham,
M. Fowler, J. Grenning, J. Highsmith, A. Hunt, R. Jeffries et al.,
“Manifesto for agile software development,” The Agile Alliance, 2001.

[9] J. Humble and D. Farley, Continuous delivery: reliable software releases
through build, test, and deployment automation. Pearson, 2010.

[10] L. Chen, “Continuous delivery: Huge benefits, but challenges too,”
Software, IEEE, vol. 32, no. 2, pp. 50–54, 2015.

[11] P. Rodríguez, A. Haghighatkhah, L. E. Lwakatare, S. Teppola, T. Suo-
malainen, J. Eskeli, T. Karvonen, P. Kuvaja, J. M. Verner, and M. Oivo,
“Continuous deployment of software intensive products and services: A
systematic mapping study,” Journal of Systems and Software, 2016.

[12] J. Bosch, Continuous Software Engineering. Springer, 2014.
[13] S. Krusche, L. Alperowitz, B. Bruegge, and M. Wagner, “Rugby: An

agile process model based on continuous delivery,” in Proceedings of the
1st International Workshop on Rapid Continuous Software Engineering.
ACM, 2014, pp. 42–50.

[14] C. Rolland, “Modeling the requirements engineering process,” Informa-
tion Modelling and Knowledge Bases, 1993.

[15] B. Bruegge and A. Dutoit, Object Oriented Software Engineering Using
UML, Patterns, and Java, 3rd ed. Prentice Hall, 2009.

[16] K. Schwaber and M. Beedle, Agile software development with Scrum.
Prentice Hall, 2002.

[17] F. W. Taylor, The principles of scientific management. Harper, 1914.
[18] B. A. Ogunnaike and W. H. Ray, Process Dynamics, Modeling, and

Control. Oxford University Press, 1994, vol. 1.
[19] M. Ginsberg and L. Quinn, “Process tailoring and the the software

capability maturity model,” Carnegie Mellon University, Tech. Rep.
CMU/SEI-94-TR-024, 1995.

[20] P. Bourque and R. Fairley, Guide to the Software Engineering Body of
Knowledge, Version 3.0. IEEE Computer Society Press, 2014.

[21] I. Jacobson, G. Booch, and J. Rumbaugh, The unified software develop-
ment process. Addison-Wesley, 1998, vol. 1.

[22] H. Takeuchi and I. Nonaka, “The new new product development game,”
Harvard business review, vol. 64, no. 1, pp. 137–146, 1986.

[23] S. Klepper, S. Krusche, S. Peters, B. Bruegge, and L. Alperowitz, “Intro-
ducing continuous delivery of mobile apps in a corporate environment:
A case study,” in Proceedings of the 2nd International Workshop on
Rapid Continuous Software Engineering. IEEE/ACM, 2015, pp. 5–11.

[24] S. Krusche, “Rugby-a process model for continuous software engi-
neering,” Ph.D. dissertation, Technische Universität München, 2016,
https://mediatum.ub.tum.de/download/1290336/1290336.pdf.

[25] S. Krusche, M. Berisha, and B. Bruegge, “Teaching Code Review
Management using Branch Based Workflows,” in Proceedings of the
38th International Conference on Software Engineering. IEEE, 2016.

[26] D. Dzvonyar, S. Krusche, R. Alkadhi, and B. Bruegge, “Context-aware
user feedback in continuous software evolution,” in Proceedings of the
International Workshop on Continuous Software Evolution and Delivery.
ACM, 2016, pp. 12–18.

[27] B. Bruegge, S. Krusche, and L. Alperowitz, “Software engineering
project courses with industrial clients,” ACM Transactions on Computing
Education, vol. 15, no. 4, pp. 17:1–17:31, 2015.

[28] S. Krusche, A. Seitz, J. Börstler, and B. Bruegge, “Interactive learning:
Increasing student participation through shorter exercise cycles,” in
Proceedings of the 19th ACE Conference. ACM, 2017.

[29] R. Steenweg, M. Kuhrmann, and D. M. Fernández, “Software engineer-
ing process metamodels - a literature review,” Technische Universität
München, Tech. Rep. TUM-I1220, 2012.

[30] T. Ternité and M. Kuhrmann, “Das V-Modell XT 1.3 Metamodell,”
Technische Universität München, Tech. Rep. TUM-I0905, 2009.

[31] Software & Systems Process Engineering Meta Model Specification
(Version 2.0), Object Management Group, 2008.

[32] International Standard 24744: Software engineering — Metamodel for
development methodologies (2nd edition), ISO/IEC, 2014.

[33] J. Ralyté, R. Deneckère, and C. Rolland, “Towards a generic model for
situational method engineering,” in Proceedings of the 15th International
Conference on Advanced Information Systems Engineering, 2003, pp.
95–110.

[34] G. Engels and S. Sauer, “A meta-method for defining software engineer-
ing methods,” in Graph transformations and model-driven engineering.
Springer, 2010, pp. 411–440.

[35] Business Process Definition Meta Model Specification (Version 1.0),
Object Management Group, 2008.

To appear at RCoSE 2017

